Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

New Perspectives in the Pharmacological Potential of Naringin in Medicine

Author(s): María Angélica Rivoira, Valeria Rodriguez, Germán Talamoni and Nori Tolosa de Talamoni*

Volume 28, Issue 10, 2021

Published on: 04 June, 2020

Page: [1987 - 2007] Pages: 21

DOI: 10.2174/0929867327666200604171351

Price: $65

conference banner
Abstract

Background: Naringin (NAR) is a flavonoid enriched in several medicinal plants and fruits. An increasing interest in this molecule has emerged because it has the potential to contribute to alleviating many health problems.

Objective: This review briefly describes the NAR pharmacokinetics and it mainly focuses on the in vitro and in vivo animal studies showing NAR beneficial effects on cardiovascular, metabolic, neurological and pulmonary disorders and cancer. The anabolic effects of NAR on different models of bone and dental diseases are also analyzed. In addition, the evidence of the NAR action on the gastrointestinal tract is reported as well as its influence on the microbiota composition and activity. Finally, current research on NAR formulations and clinical applications are discussed.

Methods: The PubMed database was searched until 2019, using the keywords NAR, naringenin, cardiovascular and metabolic disorders, neurological and pulmonary disorders, cancer, bone and dental diseases, gastrointestinal tract, microbiota, NAR formulations, clinical trials.

Results: The number of studies related to the bioavailability and pharmacokinetics of NAR is limited. Positive effects of NAR have been reported on cardiovascular diseases, Type 2 Diabetes Mellitus (T2DM), metabolic syndrome, pulmonary disorders, neurodegenerative diseases, cancer, and gastrointestinal pathologies. The current NAR formulations seem to improve its bioavailability, which would allow its clinical applications.

Conclusion: NAR is endowed with broad biological effects that could improve human health. Since a scarce number of clinical studies have been performed, the NAR use requires more investigation in order to know better their safety, efficacy, delivery, and bioavailability in humans.

Keywords: Naringin, naringenin, pharmacokinetics, naringin formulations, cardiovascular diseases, type 2 diabetesmellitus, neurodegenerative diseases, pulmonary disorders, gastrointestinal tract disorders, cancer.

[1]
Cook, N.C.; Samman, S. Flavonoids: chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7(2), 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[2]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[3]
Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem., 2007, 104(2), 466-479.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.054]
[4]
Joshi, R.; Kulkarni, Y.A.; Wairkar, S. Pharmacokinetic, pharmacodynamic and formulations aspects of naringenin: an update. Life Sci., 2018, 215, 43-56.
[http://dx.doi.org/10.1016/j.lfs.2018.10.066] [PMID: 30391464]
[5]
Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of citrus juices. Molecules, 2007, 12(8), 1641-1673.
[http://dx.doi.org/10.3390/12081641] [PMID: 17960080]
[6]
Guengerich, F.P.; Kim, D.H. In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis, 1990, 11(12), 2275-2279.
[http://dx.doi.org/10.1093/carcin/11.12.2275] [PMID: 2265479]
[7]
Fuhr, U.; Kummert, A.L. The fate of naringin in humans: a key to grapefruit juice-drug interactions? Clin. Pharmacol. Ther., 1995, 58(4), 365-373.
[http://dx.doi.org/10.1016/0009-9236(95)90048-9] [PMID: 7586927]
[8]
Mata-Bilbao, M.L.; Andrés-Lacueva, C.; Roura, E.; Jáuregui, O.; Escribano, E.; Torre, C.; Lamuela-Raventós, R.M. Absorption and pharmacokinetics of grapefruit flavanones in beagles. Br. J. Nutr., 2007, 98(1), 86-92.
[http://dx.doi.org/10.1017/S0007114507707262] [PMID: 17391560]
[9]
Duda-Chodak, A. The inhibitory effect of polyphenols on human gut microbiota. J. Physiol. Pharmacol., 2012, 63(5), 497-503.
[PMID: 23211303]
[10]
Dey, P. Gut microbiota in phytopharmacology: a comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol. Res., 2019, 147, 104367.
[http://dx.doi.org/10.1016/j.phrs.2019.104367] [PMID: 31344423]
[11]
Li, C.; Zhang, J.; Lv, F.; Ge, X.; Li, G. Naringin protects against bone loss in steroid-treated inflammatory bowel disease in a rat model. Arch. Biochem. Biophys., 2018, 650(650), 22-29.
[http://dx.doi.org/10.1016/j.abb.2018.05.011] [PMID: 29753722]
[12]
Mohamed, E.A.; Abu Hashim, I.I.; Yusif, R.M.; Shaaban, A.A.A.; El-Sheakh, A.R.; Hamed, M.F.; Badria, F.A.E. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin. Int. J. Nanomedicine, 2018, 13, 1009-1027.
[http://dx.doi.org/10.2147/IJN.S154325] [PMID: 29497294]
[13]
Orrego-Lagarón, N.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Lamuela-Raventos, R.M.; Escribano-Ferrer, E. High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism. Br. J. Nutr., 2015, 114(2), 169-180.
[http://dx.doi.org/10.1017/S0007114515001671] [PMID: 26083965]
[14]
Hsiu, S.L.; Huang, T.Y.; Hou, Y.C.; Chin, D.H.; Chao, P.D. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci., 2002, 70(13), 1481-1489.
[http://dx.doi.org/10.1016/S0024-3205(01)01491-6] [PMID: 11895099]
[15]
Liu, M.; Zou, W.; Yang, C.; Peng, W.; Su, W. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm. Drug Dispos., 2012, 33(3), 123-134.
[http://dx.doi.org/10.1002/bdd.1775] [PMID: 22374702]
[16]
Zeng, X.; Bai, Y.; Peng, W.; Su, W. Identification of naringin metabolites in human urine and feces. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(4), 647-656.
[http://dx.doi.org/10.1007/s13318-016-0380-z] [PMID: 27744636]
[17]
El Mohsen, M.A.; Marks, J.; Kuhnle, G.; Rice-Evans, C.; Moore, K.; Gibson, G.; Debnam, E.; Srai, S.K. The differential tissue distribution of the citrus flavanone naringenin following gastric instillation. Free Radic. Res., 2004, 38(12), 1329-1340.
[http://dx.doi.org/10.1080/10715760400017293] [PMID: 15763957]
[18]
Zeng, X.; Su, W.; Zheng, Y.; He, Y.; He, Y.; Rao, H.; Peng, W.; Yao, H. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front. Pharmacol., 2019, 10, 34.
[http://dx.doi.org/10.3389/fphar.2019.00034] [PMID: 30761003]
[19]
Chanet, A.; Milenkovic, D.; Manach, C.; Mazur, A.; Morand, C. Citrus flavanones: what is their role in cardiovascular protection? J. Agric. Food Chem., 2012, 60(36), 8809-8822.
[http://dx.doi.org/10.1021/jf300669s] [PMID: 22574825]
[20]
Saponara, S.; Testai, L.; Iozzi, D.; Martinotti, E.; Martelli, A.; Chericoni, S.; Sgaragli, G.; Fusi, F.; Calderone, V. (+/-)-Naringenin as large conductance Ca(2+)-activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br. J. Pharmacol., 2006, 149(8), 1013-1021.
[http://dx.doi.org/10.1038/sj.bjp.0706951] [PMID: 17088866]
[21]
Fallahi, F.; Roghani, M.; Moghadami, S. Citrus flavonoid naringenin improves aortic reactivity in streptozotocin-diabetic rats. Indian J. Pharmacol., 2012, 44(3), 382-386.
[http://dx.doi.org/10.4103/0253-7613.96350] [PMID: 22701251]
[22]
Alam, M.A.; Kauter, K.; Brown, L. Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients, 2013, 5(3), 637-650.
[http://dx.doi.org/10.3390/nu5030637] [PMID: 23446977]
[23]
Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr., 2014, 5(4), 404-417.
[http://dx.doi.org/10.3945/an.113.005603] [PMID: 25022990]
[24]
Chen, S.; Ding, Y.; Tao, W.; Zhang, W.; Liang, T.; Liu, C. Naringenin inhibits TNF-α induced VSMC proliferation and migration via induction of HO-1. Food Chem. Toxicol., 2012, 50(9), 3025-3031.
[http://dx.doi.org/10.1016/j.fct.2012.06.006] [PMID: 22709785]
[25]
Malakul, W.; Pengnet, S.; Kumchoom, C.; Tunsophon, S. Naringin ameliorates endothelial dysfunction in fructose-fed rats. Exp. Ther. Med., 2018, 15(3), 3140-3146.
[http://dx.doi.org/10.3892/etm.2018.5759] [PMID: 29456717]
[26]
Kandhare, A.D.; Ghosh, P.; Bodhankar, S.L. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem. Biol. Interact., 2014, 219(219), 101-112.
[http://dx.doi.org/10.1016/j.cbi.2014.05.012] [PMID: 24880026]
[27]
Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302), 964-967.
[http://dx.doi.org/10.1126/science.275.5302.964] [PMID: 9020076]
[28]
Leu, S.; Day, Y.J.; Sun, C.K.; Yip, H.K. tPA-MMP-9 Axis plays a pivotal role in mobilization of endothelial progenitor cells from bone marrow to circulation and ischemic region for angiogenesis. Stem Cells Int., 2016, 2016, 5417565.
[http://dx.doi.org/10.1155/2016/5417565] [PMID: 27610138]
[29]
Zhao, Z.; Ma, X.; Ma, J.; Sun, X.; Li, F.; Lv, J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem. Biol. Interact., 2018, 286, 45-51.
[http://dx.doi.org/10.1016/j.cbi.2018.03.002] [PMID: 29510123]
[30]
Reshef, N.; Hayari, Y.; Goren, C.; Boaz, M.; Madar, Z.; Knobler, H. Antihypertensive effect of sweetie fruit in patients with stage I hypertension. Am. J. Hypertens., 2005, 18(10), 1360-1363.
[http://dx.doi.org/10.1016/j.amjhyper.2005.05.021] [PMID: 16202862]
[31]
Ellwood, L.; Torun, G.; Bahar, Z.; Fernandez, R. Effects of flavonoid-rich fruits on hypertension in adults: a systematic review. JBI Database Syst. Rev. Implement. Reports, 2019, 17(10), 2075-2105.
[http://dx.doi.org/10.11124/JBISRIR-D-19-00050] [PMID: 31464854]
[32]
Shin, Y.W.; Bok, S.H.; Jeong, T.S.; Bae, K.H.; Jeoung, N.H.; Choi, M.S.; Lee, S.H.; Park, Y.B. Hypocholesterolemic effect of naringin associated with hepatic cholesterol regulating enzyme changes in rats. Int. J. Vitam. Nutr. Res., 1999, 69(5), 341-347.
[http://dx.doi.org/10.1024/0300-9831.69.5.341] [PMID: 10526779]
[33]
Jeon, S.M.; Bok, S.H.; Jang, M.K.; Kim, Y.H.; Nam, K.T.; Jeong, T.S.; Park, Y.B.; Choi, M.S. Comparison of antioxidant effects of naringin and probucol in cholesterol-fed rabbits. Clin. Chim. Acta, 2002, 317(1-2), 181-190.
[http://dx.doi.org/10.1016/S0009-8981(01)00778-1] [PMID: 11814474]
[34]
Jung, U.J.; Kim, H.J.; Lee, J.S.; Lee, M.K.; Kim, H.O.; Park, E.J.; Kim, H.K.; Jeong, T.S.; Choi, M.S. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin. Nutr., 2003, 22(6), 561-568.
[http://dx.doi.org/10.1016/S0261-5614(03)00059-1] [PMID: 14613759]
[35]
Rotimi, S.O.; Adelani, I.B.; Bankole, G.E.; Rotimi, O.A. Naringin enhances reverse cholesterol transport in high fat/low streptozocin induced diabetic rats. Biomed. Pharmacother., 2018, 101, 430-437.
[http://dx.doi.org/10.1016/j.biopha.2018.02.116] [PMID: 29501765]
[36]
Xiao, Y.; Li, L.L.; Wang, Y.Y.; Guo, J.J.; Xu, W.P.; Wang, Y.Y.; Wang, Y. Naringin administration inhibits platelet aggregation and release by reducing blood cholesterol levels and the cytosolic free calcium concentration in hyperlipidemic rabbits. Exp. Ther. Med., 2014, 8(3), 968-972.
[http://dx.doi.org/10.3892/etm.2014.1794] [PMID: 25120631]
[37]
Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ, 2002, 324(7329), 71-86.
[http://dx.doi.org/10.1136/bmj.324.7329.71] [PMID: 11786451]
[38]
Cannon, C.P.; Rhee, K.E.; Califf, R.M.; Boden, W.E.; Hirsch, A.T.; Alberts, M.J.; Cable, G.; Shao, M.; Ohman, E.M.; Steg, P.G.; Eagle, K.A.; Bhatt, D.L. REACH Registry Investigators. Current use of aspirin and antithrombotic agents in the United States among outpatients with atherothrombotic disease (from the reduction of atherothrombosis for continued health REACH registry). Am. J. Cardiol., 2010, 105(4), 445-452.
[http://dx.doi.org/10.1016/j.amjcard.2009.10.014] [PMID: 20152237]
[39]
Zaragozá, C.; Monserrat, J.; Mantecón, C.; Villaescusa, L.; Zaragozá, F.; Álvarez-Mon, M. Antiplatelet activity of flavonoid and coumarin drugs. Vascul. Pharmacol., 2016, 87, 139-149.
[http://dx.doi.org/10.1016/j.vph.2016.09.002] [PMID: 27616636]
[40]
Den Hartogh, D.J.; Tsiani, E. Antidiabetic properties of naringenin: a citrus fruit polyphenol. Biomolecules, 2019, 9(3), 99.
[http://dx.doi.org/10.3390/biom9030099] [PMID: 30871083]
[41]
Sharma, A.K.; Bharti, S.; Ojha, S.; Bhatia, J.; Kumar, N.; Ray, R.; Kumari, S.; Arya, D.S. Up-regulation of PPARγ, heat shock protein-27 and -72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br. J. Nutr., 2011, 106(11), 1713-1723.
[http://dx.doi.org/10.1017/S000711451100225X] [PMID: 21736771]
[42]
Pari, L.; Chandramohan, R. Modulatory effects of naringin on hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetes in rats. Gen. Physiol. Biophys., 2017, 36(3), 343-352.
[http://dx.doi.org/10.4149/gpb_2016055] [PMID: 28635611]
[43]
Bhattacharya, S.; Oksbjerg, N.; Young, J.F.; Jeppesen, P.B. Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetes Obes. Metab., 2014, 16(7), 602-612.
[http://dx.doi.org/10.1111/dom.12236] [PMID: 24205999]
[44]
Subramanian, M.; Thotakura, B.; Chandra Sekaran, S.P.; Jyothi, A.K.; Sundaramurthi, I. Naringin (4′,5,7-Trihydroxyflavanone 7-Rhamnoglucoside) attenuates β-cell dysfunction in diabetic rats through upregulation of PDX-1. Cells Tissues Organs (Print), 2018, 206(3), 133-143.
[http://dx.doi.org/10.1159/000496506] [PMID: 30884485]
[45]
Subramanian, M.; Thotakura, B.; Chandra Sekaran, S.P.; Jyothi, A.K.; Sundaramurthi, I. Naringin ameliorates streptozotocin-induced diabetes through forkhead Box M1-mediated beta cell proliferation. Cells Tissues Organs (Print), 2018, 206(4-5), 242-253.
[http://dx.doi.org/10.1159/000499480] [PMID: 31067533]
[46]
Nzuza, S.; Zondi, S.; Owira, P.M.O. Naringin prevents HIV-1 protease inhibitors-induced metabolic complications in vivo. PLoS One, 2017, 12(11), e0183355.
[http://dx.doi.org/10.1371/journal.pone.0183355] [PMID: 29121676]
[47]
Lim, Y.J.; Kim, J.H.; Pan, J.H.; Kim, J.K.; Park, T.S.; Kim, Y.J.; Lee, J.H.; Kim, J.H. Naringin protects pancreatic β-cells against oxidative stress-induced apoptosis by inhibiting both intrinsic and extrinsic pathways in insulin-deficient diabetic mice. Mol. Nutr. Food Res., 2018, 62(5), 1700810.
[http://dx.doi.org/10.1002/mnfr.201700810] [PMID: 29314619]
[48]
Rivoira, M.; Rodríguez, V.; Picotto, G.; Battaglino, R.; Tolosa de Talamoni, N. Naringin prevents bone loss in a rat model of type 1 diabetes mellitus. Arch. Biochem. Biophys., 2018, 637, 56-63.
[http://dx.doi.org/10.1016/j.abb.2017.12.001] [PMID: 29208404]
[49]
Rivoira, M.; Rodríguez, V.; López, M.P.; Tolosa de Talamoni, N. Time dependent changes in the intestinal Ca2+ absorption in rats with type I diabetes mellitus are associated with alterations in the intestinal redox state. Biochim. Biophys. Acta, 2015, 1852(3), 386-394.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.018] [PMID: 25459228]
[50]
Rodríguez, V.; Plavnik, L.; de Talamoni, N.T. Naringin attenuates liver damage in streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2018, 105, 95-102.
[http://dx.doi.org/10.1016/j.biopha.2018.05.120] [PMID: 29852394]
[51]
Youdim, K.A.; Shukitt-Hale, B.; Joseph, J.A. Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic. Biol. Med., 2004, 37(11), 1683-1693.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.08.002] [PMID: 15528027]
[52]
Zbarsky, V.; Datla, K.P.; Parkar, S.; Rai, D.K.; Aruoma, O.I.; Dexter, D.T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic. Res., 2005, 39(10), 1119-1125.
[http://dx.doi.org/10.1080/10715760500233113] [PMID: 16298737]
[53]
Kumar, A.; Prakash, A.; Dogra, S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem. Toxicol., 2010, 48(2), 626-632.
[http://dx.doi.org/10.1016/j.fct.2009.11.043] [PMID: 19941926]
[54]
Prakash, A.; Shur, B.; Kumar, A. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats. Int. J. Neurosci., 2013, 123(9), 636-645.
[http://dx.doi.org/10.3109/00207454.2013.785542] [PMID: 23510099]
[55]
Wang, D.; Gao, K.; Li, X.; Shen, X.; Zhang, X.; Ma, C.; Qin, C.; Zhang, L. Long-term naringin consumption reverses a glucose uptake defect and improves cognitive deficits in a mouse model of Alzheimer’s disease. Pharmacol. Biochem. Behav., 2012, 102(1), 13-20.
[http://dx.doi.org/10.1016/j.pbb.2012.03.013] [PMID: 22741174]
[56]
Wang, D.M.; Yang, Y.J.; Zhang, L.; Zhang, X.; Guan, F.F.; Zhang, L.F. Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimer’s disease. Int. J. Mol. Sci., 2013, 14(3), 5576-5586.
[http://dx.doi.org/10.3390/ijms14035576] [PMID: 23478434]
[57]
Yang, W.; Zhou, K.; Zhou, Y.; An, Y.; Hu, T.; Lu, J.; Huang, S.; Pei, G. Naringin dihydrochalcone ameliorates cognitive deficits and neuropathology in APP/PS1 transgenic mice. Front. Aging Neurosci., 2018, 10, 169.
[http://dx.doi.org/10.3389/fnagi.2018.00169] [PMID: 29922152]
[58]
Sachdeva, A.K.; Kuhad, A.; Chopra, K. Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol. Biochem. Behav., 2014, 127, 101-110.
[http://dx.doi.org/10.1016/j.pbb.2014.11.002] [PMID: 25449356]
[59]
Greenamyre, J.T.; Sherer, T.B.; Betarbet, R.; Panov, A.V. Complex I and Parkinson’s disease. IUBMB Life, 2001, 52(3-5), 135-141.
[http://dx.doi.org/10.1080/15216540152845939] [PMID: 11798025]
[60]
Shamoto-Nagai, M.; Maruyama, W.; Kato, Y.; Isobe, K.; Tanaka, M.; Naoi, M.; Osawa, T. An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells. J. Neurosci. Res., 2003, 74(4), 589-597.
[http://dx.doi.org/10.1002/jnr.10777] [PMID: 14598303]
[61]
Kim, H.J.; Song, J.Y.; Park, H.J.; Park, H.K.; Yun, D.H.; Chung, J.H. Naringin protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Korean J. Physiol. Pharmacol., 2009, 13(4), 281-285.
[http://dx.doi.org/10.4196/kjpp.2009.13.4.281] [PMID: 19885011]
[62]
Leem, E.; Nam, J.H.; Jeon, M.T.; Shin, W.H.; Won, S.Y.; Park, S.J.; Choi, M.S.; Jin, B.K.; Jung, U.J.; Kim, S.R. Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson’s disease. J. Nutr. Biochem., 2014, 25(7), 801-806.
[http://dx.doi.org/10.1016/j.jnutbio.2014.03.006] [PMID: 24797334]
[63]
Kim, H.D.; Jeong, K.H.; Jung, U.J.; Kim, S.R. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson’s disease in vivo, but not enough to restore the lesioned dopaminergic system. J. Nutr. Biochem., 2016, 28, 140-146.
[http://dx.doi.org/10.1016/j.jnutbio.2015.10.013] [PMID: 26878791]
[64]
Ahmed, S.; Khan, H.; Aschner, M.; Hasan, M.M.; Hassan, S.T.S. Therapeutic potential of naringin in neurological disorders. Food Chem. Toxicol., 2019, 132, 110646.
[http://dx.doi.org/10.1016/j.fct.2019.110646] [PMID: 31252025]
[65]
Lin, B.Q.; Li, P.B.; Wang, Y.G.; Peng, W.; Wu, Z.; Su, W.W.; Ji, H. The expectorant activity of naringenin. Pulm. Pharmacol. Ther., 2008, 21(2), 259-263.
[http://dx.doi.org/10.1016/j.pupt.2007.05.001] [PMID: 17664077]
[66]
Gao, S.; Li, P.; Yang, H.; Fang, S.; Su, W. Antitussive effect of naringin on experimentally induced cough in guinea pigs. Planta Med., 2011, 77(1), 16-21.
[http://dx.doi.org/10.1055/s-0030-1250117] [PMID: 20645246]
[67]
Liu, Y.; Wu, H.; Nie, Y.C.; Chen, J.L.; Su, W.W.; Li, P.B. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway. Int. Immunopharmacol., 2011, 11(10), 1606-1612.
[http://dx.doi.org/10.1016/j.intimp.2011.05.022] [PMID: 21640201]
[68]
Chen, Y.; Wu, H.; Nie, Y.C.; Li, P.B.; Shen, J.G.; Su, W.W. Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs. Environ. Toxicol. Pharmacol., 2014, 38(1), 279-287.
[http://dx.doi.org/10.1016/j.etap.2014.04.030] [PMID: 24998504]
[69]
Luo, Y.L.; Zhang, C.C.; Li, P.B.; Nie, Y.C.; Wu, H.; Shen, J.G.; Su, W.W. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. Int. Immunopharmacol., 2012, 13(3), 301-307.
[http://dx.doi.org/10.1016/j.intimp.2012.04.019] [PMID: 22575871]
[70]
Nie, Y.C.; Wu, H.; Li, P.B.; Luo, Y.L.; Long, K.; Xie, L.M.; Shen, J.G.; Su, W.W. Anti-inflammatory effects of naringin in chronic pulmonary neutrophilic inflammation in cigarette smoke-exposed rats. J. Med. Food, 2012, 15(10), 894-900.
[http://dx.doi.org/10.1089/jmf.2012.2251] [PMID: 22985397]
[71]
Shi, Y.; Dai, J.; Liu, H.; Li, R.R.; Sun, P.L.; Du, Q.; Pang, L.L.; Chen, Z.; Yin, K.S. Naringenin inhibits allergen-induced airway inflammation and airway responsiveness and inhibits NF-kappaB activity in a murine model of asthma. Can. J. Physiol. Pharmacol., 2009, 87(9), 729-735.
[http://dx.doi.org/10.1139/Y09-065] [PMID: 19794524]
[72]
Guihua, X.; Shuyin, L.; Jinliang, G.; Wang, S. Naringin protects ovalbumin-induced airway inflammation in a mouse model of asthma. Inflammation, 2016, 39(2), 891-899.
[http://dx.doi.org/10.1007/s10753-016-0321-7] [PMID: 26920847]
[73]
Kim, J.K.; Park, J.H.; Ku, H.J.; Kim, S.H.; Lim, Y.J.; Park, J.W.; Lee, J.H. Naringin protects acrolein-induced pulmonary injuries through modulating apoptotic signaling and inflammation signaling pathways in mice. J. Nutr. Biochem., 2018, 59, 10-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.05.012] [PMID: 29957300]
[74]
Zhang, P.; Dai, K.R.; Yan, S.G.; Yan, W.Q.; Zhang, C.; Chen, D.Q.; Xu, B.; Xu, Z.W. Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. Eur. J. Pharmacol., 2009, 607(1-3), 1-5.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.035] [PMID: 19326565]
[75]
Chen, K.Y.; Lin, K.C.; Chen, Y.S.; Yao, C.H. A novel porous gelatin composite containing naringin for bone repair. Evid. Based Complement. Alternat. Med., 2013, 2013, 283941.
[http://dx.doi.org/10.1155/2013/283941] [PMID: 23431335]
[76]
Wong, K.C.; Pang, W.Y.; Wang, X.L.; Mok, S.K.; Lai, W.P.; Chow, H.K.; Leung, P.C.; Yao, X.S.; Wong, M.S. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. Br. J. Nutr., 2013, 110(3), 475-485.
[http://dx.doi.org/10.1017/S0007114512005405] [PMID: 23302510]
[77]
Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D.S. Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med., 2014, 80(6), 437-451.
[http://dx.doi.org/10.1055/s-0034-1368351] [PMID: 24710903]
[78]
Li, N.; Jiang, Y.; Wooley, P.H.; Xu, Z.; Yang, S.Y. Naringin promotes osteoblast differentiation and effectively reverses ovariectomy-associated osteoporosis. J. Orthop. Sci., 2013, 18(3), 478-485.
[http://dx.doi.org/10.1007/s00776-013-0362-9] [PMID: 23553541]
[79]
Ang, E.S.M.; Yang, X.; Chen, H.; Liu, Q.; Zheng, M.H.; Xu, J. Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation. FEBS Lett., 2011, 585(17), 2755-2762.
[http://dx.doi.org/10.1016/j.febslet.2011.07.046] [PMID: 21835177]
[80]
Lin, F.; Zhu, Y.; Hu, G. Naringin promotes cellular chemokine synthesis and potentiates mesenchymal stromal cell migration via the Ras signaling pathway. Exp. Ther. Med., 2018, 16(4), 3504-3510.
[http://dx.doi.org/10.3892/etm.2018.6634] [PMID: 30233702]
[81]
Wong, R.W.K.; Rabie, A.B.M. Effect of naringin collagen graft on bone formation. Biomaterials, 2006, 27(9), 1824-1831.
[http://dx.doi.org/10.1016/j.biomaterials.2005.11.009] [PMID: 16310246]
[82]
Li, F.; Sun, X.; Ma, J.; Ma, X.; Zhao, B.; Zhang, Y.; Tian, P.; Li, Y.; Han, Z. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway. Biochem. Biophys. Res. Commun., 2014, 452(3), 629-635.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.117] [PMID: 25181344]
[83]
Wang, D.; Ma, W.; Wang, F.; Dong, J.; Wang, D.; Sun, B.; Wang, B. Stimulation of Wnt/β-catenin signaling to improve bone development by naringin via interacting with AMPK and Akt. Cell. Physiol. Biochem., 2015, 36(4), 1563-1576.
[http://dx.doi.org/10.1159/000430319] [PMID: 26159568]
[84]
Song, N.; Zhao, Z.; Ma, X.; Sun, X.; Ma, J.; Li, F.; Sun, L.; Lv, J. Naringin promotes fracture healing through stimulation of angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats. Chem. Biol. Interact., 2017, 261, 11-17.
[http://dx.doi.org/10.1016/j.cbi.2016.10.020] [PMID: 27833010]
[85]
Kuang, M.J.; Zhang, W.H.; He, W.W.; Sun, L.; Ma, J.X.; Wang, D.; Ma, X.L. Naringin regulates bone metabolism in glucocorticoid-induced osteonecrosis of the femoral head via the Akt/Bad signal cascades. Chem. Biol. Interact., 2019, 304, 97-105.
[http://dx.doi.org/10.1016/j.cbi.2019.03.008] [PMID: 30878453]
[86]
Chen, L.L.; Lei, L.H.; Ding, P.H.; Tang, Q.; Wu, Y.M. Osteogenic effect of Drynariae rhizoma extracts and naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Arch. Oral Biol., 2011, 56(12), 1655-1662.
[http://dx.doi.org/10.1016/j.archoralbio.2011.06.008] [PMID: 21764032]
[87]
Chang, P.C.; Chao, Y.C.; Hsiao, M.H.; Chou, H.S.; Jheng, Y.H.; Yu, X.H.; Lee, N.; Yang, C.; Liu, D.M. Inhibition of periodontitis induction using a stimuli-responsive hydrogel carrying naringin. J. Periodontol., 2017, 88(2), 190-196.
[http://dx.doi.org/10.1902/jop.2016.160189] [PMID: 27739344]
[88]
Abdullahi, M.; Olotu, F.A.; Soliman, M.E. Solving the riddle: unraveling the mechanisms of blocking the binding of leukotoxin by therapeutic antagonists in periodontal diseases. J. Cell. Biochem., 2018, 119(11), 9364-9379.
[http://dx.doi.org/10.1002/jcb.27254] [PMID: 30129224]
[89]
Lima, A.C.D.; Cecatti, C.; Fidélix, M.P.; Adorno, M.A.T.; Sakamoto, I.K.; Cesar, T.B.; Sivieri, K. Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: controlled clinical. J. Med. Food, 2019, 22(2), 202-210.
[http://dx.doi.org/10.1089/jmf.2018.0080] [PMID: 30638420]
[90]
Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de Los Reyes-Gavilán, C.G.; Salazar, N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol., 2016, 7, 185.
[http://dx.doi.org/10.3389/fmicb.2016.00185] [PMID: 26925050]
[91]
Stevens, Y.; Rymenant, E.V.; Grootaert, C.; Camp, J.V.; Possemiers, S.; Masclee, A.; Jonkers, D. The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients, 2019, 11(7), E1464.
[http://dx.doi.org/10.3390/nu11071464] [PMID: 31252646]
[92]
Aura, A.M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev., 2008, 7(3), 407-429.
[http://dx.doi.org/10.1007/s11101-008-9095-3]
[93]
Van Rymenant, E.; Salden, B.; Voorspoels, S.; Jacobs, G.; Noten, B.; Pitart, J.; Possemiers, S.; Smagghe, G.; Grootaert, C.; Van Camp, J. A critical evaluation of in vitro hesperidin 2S bioavailability in a model combining luminal (microbial) digestion and Caco-2 cell absorption in comparison to a randomized controlled humantrial. Mol. Nutr. Food Res., 2018, 62(8), e1700881.
[http://dx.doi.org/10.1002/mnfr.201700881] [PMID: 29451355]
[94]
Chen, T.; Su, W.; Yan, Z.; Wu, H.; Zeng, X.; Peng, W.; Gan, L.; Zhang, Y.; Yao, H. Identification of naringin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. J. Pharm. Biomed. Anal., 2018, 161, 262-272.
[http://dx.doi.org/10.1016/j.jpba.2018.08.039] [PMID: 30172881]
[95]
Bakar, E.; Ulucam, E.; Cerkezkayabekir, A.; Sanal, F.; Inan, M. Investigation of the effects of naringin on intestinal ischemia reperfusion model at the ultrastructural and biochemical level. Biomed. Pharmacother., 2019, 109, 345-350.
[http://dx.doi.org/10.1016/j.biopha.2018.10.045] [PMID: 30399568]
[96]
Cao, H.; Liu, J.; Shen, P.; Cai, J.; Han, Y.; Zhu, K.; Fu, Y.; Zhang, N.; Zhang, Z.; Cao, Y. Protective effect of naringin on DSS-induced ulcerative colitis in mice. J. Agric. Food Chem., 2018, 66(50), 13133-13140.
[http://dx.doi.org/10.1021/acs.jafc.8b03942] [PMID: 30472831]
[97]
Takanaga, H.; Ohnishi, A.; Matsuo, H.; Sawada, Y. Inhibition of vinblastine efflux mediated by P-glycoprotein by grapefruit juice components in caco-2 cells. Biol. Pharm. Bull., 1998, 21(10), 1062-1066.
[http://dx.doi.org/10.1248/bpb.21.1062] [PMID: 9821810]
[98]
Burnier, M. Angiotensin II type 1 receptor blockers. Circulation, 2001, 103(6), 904-912.
[http://dx.doi.org/10.1161/01.CIR.103.6.904] [PMID: 11171802]
[99]
Surampalli, G.; K; Nanjwade, B.; Patil, P.A. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions using in-situ rat models. Drug Dev. Ind. Pharm., 2015, 41(7), 1057-1065.
[http://dx.doi.org/10.3109/03639045.2014.925918] [PMID: 24918161]
[100]
Rodríguez, V.; Rivoira, M.; Guizzardi, S.; de Talamoni, N.T. Naringin prevents the inhibition of intestinal Ca2+ absorption induced by a fructose rich diet. Arch. Biochem. Biophys., 2017, 636, 1-10.
[http://dx.doi.org/10.1016/j.abb.2017.11.002] [PMID: 29122589]
[101]
So, F.V.; Guthrie, N.; Chambers, A.F.; Moussa, M.; Carroll, K.K. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr. Cancer, 1996, 26(2), 167-181.
[http://dx.doi.org/10.1080/01635589609514473] [PMID: 8875554]
[102]
Kanno, S.; Tomizawa, A.; Hiura, T.; Osanai, Y.; Shouji, A.; Ujibe, M.; Ohtake, T.; Kimura, K.; Ishikawa, M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol. Pharm. Bull., 2005, 28(3), 527-530.
[http://dx.doi.org/10.1248/bpb.28.527] [PMID: 15744083]
[103]
Schindler, R.; Mentlein, R. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J. Nutr., 2006, 136(6), 1477-1482.
[http://dx.doi.org/10.1093/jn/136.6.1477] [PMID: 16702307]
[104]
Luo, H.; Jiang, B.H.; King, S.M.; Chen, Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr. Cancer, 2008, 60(6), 800-809.
[http://dx.doi.org/10.1080/01635580802100851] [PMID: 19005980]
[105]
Kim, D.I.; Lee, S.J.; Lee, S.B.; Park, K.; Kim, W.J.; Moon, S.K. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis, 2008, 29(9), 1701-1709.
[http://dx.doi.org/10.1093/carcin/bgn055] [PMID: 18296682]
[106]
Ramesh, E.; Alshatwi, A.A. Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem. Toxicol., 2013, 51, 97-105.
[http://dx.doi.org/10.1016/j.fct.2012.07.033] [PMID: 22847135]
[107]
Zeng, L.; Zhen, Y.; Chen, Y.; Zou, L.; Zhang, Y.; Hu, F.; Feng, J.; Shen, J.; Wei, B. Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF- κB/COX-2-caspase-1 pathway in HeLa cervical cancer cells. Int. J. Oncol., 2014, 45(5), 1929-1936.
[http://dx.doi.org/10.3892/ijo.2014.2617] [PMID: 25174821]
[108]
Raha, S.; Yumnam, S.; Hong, G.E.; Lee, H.J.; Saralamma, V.V.; Park, H.S.; Heo, J.D.; Lee, S.J.; Kim, E.H.; Kim, J.A.; Kim, G.S. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int. J. Oncol., 2015, 47(3), 1061-1069.
[http://dx.doi.org/10.3892/ijo.2015.3095] [PMID: 26201693]
[109]
Chen, M.; Peng, W.; Hu, S.; Deng, J. miR-126/VCAM-1 regulation by naringin suppresses cell growth of human non-small cell lung cancer. Oncol. Lett., 2018, 16(4), 4754-4760.
[http://dx.doi.org/10.3892/ol.2018.9204] [PMID: 30197681]
[110]
Li, H.; Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Wan, J.; Luo, F.; Zhang, L.; Li, H.; Ren, G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol. Lett., 2013, 220(3), 219-228.
[http://dx.doi.org/10.1016/j.toxlet.2013.05.006] [PMID: 23694763]
[111]
Tan, T.W.; Chou, Y.E.; Yang, W.H.; Hsu, C.J.; Fong, Y.C.; Tang, C.H. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126. Int. Immunopharmacol., 2014, 22(1), 107-114.
[http://dx.doi.org/10.1016/j.intimp.2014.06.029] [PMID: 24975661]
[112]
Aroui, S.; Najlaoui, F.; Chtourou, Y.; Meunier, A.C.; Laajimi, A.; Kenani, A.; Fetoui, H. Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway. Tumour Biol., 2016, 37(3), 3831-3839.
[http://dx.doi.org/10.1007/s13277-015-4230-4] [PMID: 26474590]
[113]
Li, J.; Dong, Y.; Hao, G.; Wang, B.; Wang, J.; Liang, Y.; Liu, Y.; Zhen, E.; Feng, D.; Liang, G. Naringin suppresses the development of glioblastoma by inhibiting FAK activity. J. Drug Target., 2017, 25(1), 41-48.
[http://dx.doi.org/10.1080/1061186X.2016.1184668] [PMID: 27125297]
[114]
Camargo, C.A.; Gomes-Marcondes, M.C.; Wutzki, N.C.; Aoyama, H. Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with Walker 256 carcinosarcoma. Anticancer Res., 2012, 32(1), 129-133.
[PMID: 22213297]
[115]
Cai, L.; Wu, H.; Tu, C.; Wen, X.; Zhou, B. Naringin inhibits ovarian tumor growth by promoting apoptosis: an in vivo study. Oncol. Lett., 2018, 16(1), 59-64.
[http://dx.doi.org/10.3892/ol.2018.8611] [PMID: 29928387]
[116]
Erdogan, S.; Doganlar, O.; Doganlar, Z.B.; Turkekul, K. Naringin sensitizes human prostate cancer cells to paclitaxel therapy. Prostate Int., 2018, 6(4), 126-135.
[http://dx.doi.org/10.1016/j.prnil.2017.11.001] [PMID: 30505814]
[117]
Jabri, T.; Imran, M.; Aziz, A.; Rao, K.; Kawish, M.; Irfan, M.; Malik, M.I.; Simjee, S.U.; Arfan, M.; Shah, M.R. Design and synthesis of mixed micellar system for enhanced anticancer efficacy of paclitaxel through its co-delivery with naringin. Drug Dev. Ind. Pharm., 2019, 45(5), 703-714.
[http://dx.doi.org/10.1080/03639045.2018.1550091] [PMID: 30557053]
[118]
Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr., 2017, 105(1), 10-22.
[http://dx.doi.org/10.3945/ajcn.116.136051] [PMID: 27881391]
[119]
Sansone, F.; Aquino, R.P.; Del Gaudio, P.; Colombo, P.; Russo, P. Physical characteristics and aerosol performance of naringin dry powders for pulmonary delivery prepared by spray-drying. Eur. J. Pharm. Biopharm., 2009, 72(1), 206-213.
[http://dx.doi.org/10.1016/j.ejpb.2008.10.007] [PMID: 18996478]
[120]
Prota, L.; Santoro, A.; Bifulco, M.; Aquino, R.P.; Mencherini, T.; Russo, P. Leucine enhances aerosol performance of naringin dry powder and its activity on cystic fibrosis airway epithelial cells. Int. J. Pharm., 2011, 412(1-2), 8-19.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.055] [PMID: 21459138]
[121]
Wang, J.; Ye, X.; Lin, S.; Liu, H.; Qiang, Y.; Chen, H.; Jiang, Z.; Zhang, K.; Duan, X.; Xu, Y. Preparation, characterization and in vitro and in vivo evaluation of a solid dispersion of Naringin. Drug Dev. Ind. Pharm., 2018, 44(11), 1725-1732.
[http://dx.doi.org/10.1080/03639045.2018.1483390] [PMID: 29851514]
[122]
Pleguezuelos-Villa, M.; Mir-Palomo, S.; Díez-Sales, O.; Buso, M.A.O.V.; Sauri, A.R.; Nácher, A. A novel ultradeformable liposomes of naringin for anti-inflammatory therapy. Colloids Surf. B Biointerfaces, 2018, 162, 265-270.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.068] [PMID: 29216513]
[123]
Lavrador, P.; Gaspar, V.M.; Mano, J.F. Bioinstructive naringin-loaded micelles for guiding stem cell osteodifferentiation. Adv. Healthc. Mater., 2018, 7(19), e1800890.
[http://dx.doi.org/10.1002/adhm.201800890] [PMID: 30106519]
[124]
Gonzalez, A.M.; Sell, K.M.; Ghigiarelli, J.J.; Spitz, R.W.; Accetta, M.R.; Mangine, G.T. Effect of multi-ingredient supplement containing satiereal, naringin, and vitamin D on body composition, mood, and satiety in overweight adults. J. Diet. Suppl., 2018, 15(6), 965-976.
[http://dx.doi.org/10.1080/19390211.2017.1407385] [PMID: 29336628]
[125]
Lima, A.C.D.; Cecatti, C.; Fidélix, M.P.; Adorno, M.A.T.; Sakamoto, I.K.; Cesar, T.B.; Sivieri, K. Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: controlled clinical trials. J. Med. Food, 2019, 22(2), 202-210.
[http://dx.doi.org/10.1089/jmf.2018.0080] [PMID: 30638420]
[126]
Rebello, C.J.; Beyl, R.A.; Lertora, J.J.L.; Greenway, F.L.; Ravussin, E.; Ribnicky, D.M.; Poulev, A.; Kennedy, B.J.; Castro, H.F.; Campagna, S.R.; Coulter, A.A.; Redman, L.M. Safety and pharmacokinetics of naringenin: a randomized, controlled, single-ascending-dose clinical trial. Diabetes Obes. Metab., 2020, 22(1), 91-98.
[http://dx.doi.org/10.1111/dom.13868] [PMID: 31468636]
[127]
Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel), 2019, 12(1), 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy