[12]
Reichmann H. Long-term treatment with dopamine agonists in idiopathic Parkinson's disease J Neurol 2000. 247 Suppl 4: IV/17-9.
[17]
Rewane A, Nagalli S. Ropinirole. Treasure Island, FL: StatPearls 2020.
[86]
Sari Y, Khalil A. Monoamine oxidase inhibitors extracted from tobacco smoke as neuroprotective factors for potential treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 2015; 14: 777-85.
[89]
Torres N, Molet J, Moro C, Mitrofanis J, Benabid AL. Neuroprotective surgical strategies in Parkinson’s disease: role of preclinical data. Int J Mol Sci 2017; 18(10): 2190.
[93]
Date I, Aoi M, Tomita S, Collins F, Ohmoto TJN. GDNF administration induces recovery of the nigrostriatal dopaminergic system both in young and aged parkinsonian mice. Neuroreport 1998; 9(10): 2365-9.
[94]
Tomac A, Lindqvist E, Lin L-F, et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373(6512): 335-9.
[95]
Grondin R, Zhang Z, Yi A, et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 2002; 125(Pt 10): 2191-201.
[96]
Decressac M, Ulusoy A, Mattsson B, et al. GDNF fails to exert neuroprotection in a rat α-synuclein model of Parkinson’s disease. Brain 2011; 134(Pt 8): 2302-11.
[97]
Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Björklund A. α-Synuclein–induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 2012; 4(163): 163ra156.
[98]
Horger BA, Nishimura MC, Armanini MP, et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 1998; 18(13): 4929-37.
[100]
Li H, He Z, Su T, et al. Protective action of recombinant neurturin on dopaminergic neurons in substantia nigra in a rhesus monkey model of Parkinson’s disease. Neurol Res 2003; 25(3): 263-7.
[101]
Reyes-Corona D, Vazquez-Hernandez N, Escobedo L, et al. Neurturin overexpression in dopaminergic neurons induces presynaptic and postsynaptic structural changes in rats with chronic 6-hydroxydopamine lesion. PLoS One 2017; 12(11): e0188239.
[102]
Herzog CD, Brown L, Kruegel BR, et al. Enhanced neurotrophic distribution, cell signaling and neuroprotection following substantia nigral versus striatal delivery of AAV2-NRTN (CERE-120). Neurobiol Dis 2013; 58: 38-48.
[103]
Gasmi M, Brandon EP, Herzog CD, et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 2007; 27: 67-76.
[104]
Fjord-Larsen L, Johansen JL, Kusk P, et al. Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified Neurturin construct. Exp Neurol 2005; 195(1): 49-60.
[105]
Herzog CD, Dass B, Gasmi M, et al. Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery to the monkey striatum. Mol Ther 2008; 16(10): 1737-44.
[110]
Funa K, Yamada N, Brodin G, et al. Enhanced synthesis of platelet-derived growth factor following injury induced by 6-hydroxydopamine in rat brain. Neuroscience 1996; 74(3): 825-33.
[111]
Padel T, Özen I, Boix J, et al. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease. Neurobiol Dis 2016; 94: 95-105.
[112]
Zachrisson O, Zhao M, Andersson A, et al. Restorative effects of platelet derived growth factor-BB in rodent models of Parkinson's disease. J Parkinsons Dis 2011; 1(1): 49-63.
[113]
Voutilainen MH, Bäck S, Peränen J, et al. Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson's disease 2011; 228: 98-108.
[114]
Airavaara M, Harvey BK, Voutilainen MH, et al. CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant 2012; 21(6): 1213-23.
[115]
Ren X, Zhang T, Gong X, Hu G, Ding W. Wang XJEn. AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Exp Neurol 2013; 248: 148-56.
[116]
Cordero-Llana Ó, Houghton BC, Rinaldi F, et al. Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease. Mol Ther 2015; 23: 244-54.
[117]
Voutilainen MH, De Lorenzo F, Stepanova P, et al. Evidence for an additive neurorestorative effect of simultaneously administered CDNF and GDNF in hemiparkinsonian rats: implications for different mechanism of action. eNeuro 2017; 4(1) : ENEURO.0117-16.2017.