Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biochemical Markers in the Prediction of Contrast-induced Acute Kidney Injury

Author(s): Magdalena Zdziechowska, Anna Gluba-Brzózka*, Beata Franczyk and Jacek Rysz

Volume 28, Issue 6, 2021

Published on: 01 May, 2020

Page: [1234 - 1250] Pages: 17

DOI: 10.2174/0929867327666200502015749

Price: $65

conference banner
Abstract

For many years clinicians have been searching for “kidney troponin”- a simple diagnostic tool to assess the risk of acute kidney injury (AKI). Recently, the rise in the variety of contrast-related procedures (contrast computed tomography (CT), percutaneous coronary intervention (PCI) and angiography) has resulted in the increased number of contrast-induced acute kidney injuries (CI-AKI). CIAKI remains an important cause of overall mortality, prolonged hospitalisation and it increases the total costs of therapy. The consequences of kidney dysfunction affect the quality of life and they may lead to disability as well. Despite extensive worldwide research, there are no sensitive and reliable methods of CI-AKI prediction. Kidney Injury Molecule 1 (KIM-1) and Neutrophil Gelatinase Lipocalin (NGAL) have been considered as kidney-specific molecules. High concentrations of these substances before the implementation of contrast-related procedures have been suggested to enable the estimation of kidney vulnerability to CI-AKI and they seem to have the predictive potential for cardiovascular events and overall mortality. According to other authors, routine determination of known inflammation factors (e.g., CRP, WBC, and neutrophil count) may be helpful in the prediction of CIAKI. However, the results of clinical trials provide contrasting results. The pathomechanism of contrast- induced nephropathy remains unclear. Due to its prevalence, the evaluation of the risk of acute kidney injury remains a serious problem to be solved. This paper reviews pathophysiology and suggested optimal markers facilitating the prediction of contrast-induced acute kidney injury.

Keywords: Contrast-induced acute kidney injury, contrast CT, percutaneous coronary angioplasty, Kidney Injury Molecule 1 (KIM-1), Neutrophil Gelatinase Lipocalin (NGAL), Percutaneous Coronary Intervention (PCI).

[1]
Makris, K.; Spanou, L. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin. Biochem. Rev., 2016, 37(2), 85-98.
[PMID: 28303073]
[2]
Kumar, S.; Nair, R.K.; Aggarwal, N.; Abbot, A.K.; Muthukrishnan, J.; Kumar, K.V. Risk factors for contrast-induced nephropathy after coronary angiography. Saudi J. Kidney Dis. Transpl., 2017, 28(2), 318-324.
[http://dx.doi.org/10.4103/1319-2442.202758] [PMID: 28352014]
[3]
KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl., 2012, 2, 1.
[http://dx.doi.org/10.1038/kisup.2012.1]
[4]
Hiremath, S.; Vijayan, A.; Dave, N.; Raghavan, R. Contrast is nephrotoxic vs contrast is not nephrotoxic. #NephMadness 2018. Available at: https://ajkdblog.org/2018/03/15/nephmadness-2018-contrast-region/ (Accessed date: 17 September,2020
[5]
Barbero, U.; Iannaccone, M.; De Benedictis, M.; Doronzo, B. Contrast induced acute kidney injury and the role of beta-blockers in its prevention. J. Thorac. Dis., 2019, 11(7), 2689-2694.
[http://dx.doi.org/10.21037/jtd.2019.06.53] [PMID: 31463094]
[6]
Fuhrman, D.Y.; Kane-Gill, S.; Goldstein, S.L.; Priyanka, P.; Kellum, J.A. Acute kidney injury epidemiology, risk factors, and outcomes in critically ill patients 16-25 years of age treated in an adult intensive care unit. Ann. Intensive Care, 2018, 8(1), 26.
[http://dx.doi.org/10.1186/s13613-018-0373-y] [PMID: 29445884]
[7]
Ozkok, S.; Ozkok, A. Contrast-induced acute kidney injury: a review of practical points. World J. Nephrol., 2017, 6(3), 86-99.
[http://dx.doi.org/10.5527/wjn.v6.i3.86] [PMID: 28540198]
[8]
Seeliger, E.; Sendeski, M.; Rihal, C.S.; Persson, P.B. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur. Heart J., 2012, 33(16), 2007-2015.
[http://dx.doi.org/10.1093/eurheartj/ehr494] [PMID: 22267241]
[9]
Barbero, U.; D’Ascenzo, F.; Campo, G.; Kleczyński, P.; Dziewierz, A.; Menozzi, M.; Jiménez Díaz, V.A.; Cerrato, E.; Raposeiras-Roubín, S.; Ielasi, A.; Rognoni, A.; Fineschi, M.; Kanji, R.; Jaguszewski, M.J.; Picchi, A.; Andò, G.; Soraci, E.; Mancone, M.; Sardella, G.; Calcagno, S.; Gallo, F.; Huczek, Z.; Krakowian, M.; Verardi, R.; Montefusco, A.; Omedè, P.; Lococo, M.; Moretti, C.; D’Amico, M.; Rigattieri, S.; Gaita, F.; Rinaldi, M.; Escaned, J. Safety of FFR-guided revascularisation deferral in Anatomically prognostiC diseasE (FACE: CARDIOGROUP V STUDY): a prospective multicentre study. Int. J. Cardiol., 2018, 270, 107-112.
[http://dx.doi.org/10.1016/j.ijcard.2018.06.013] [PMID: 29937300]
[10]
Iannaccone, M.; Barbero, U.; D’ascenzo, F.; Latib, A.; Pennacchi, M.; Rossi, M.L.; Ugo, F.; Meliga, E.; Kawamoto, H.; Moretti, C.; Ielasi, A.; Garbo, R.; Colombo, A.; Sardella, G.; Boccuzzi, G.G. Rotational atherectomy in very long lesions: results for the ROTATE registry. Catheter. Cardiovasc. Interv., 2016, 88(6), E164-E172.
[http://dx.doi.org/10.1002/ccd.26548] [PMID: 27083771]
[11]
Weisbord, S.D.; Mor, M.K.; Resnick, A.L.; Hartwig, K.C.; Palevsky, P.M.; Fine, M.J. Incidence and outcomes of contrast-induced AKI following computed tomography. Clin. J. Am. Soc. Nephrol., 2008, 3(5), 1274-1281.
[http://dx.doi.org/10.2215/CJN.01260308] [PMID: 18463172]
[12]
Barrett, B.J.; Katzberg, R.W.; Thomsen, H.S.; Chen, N.; Sahani, D.; Soulez, G.; Heiken, J.P.; Lepanto, L.; Ni, Z.H.; Ni, Z.H.; Nelson, R. Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Invest. Radiol., 2006, 41(11), 815-821.
[http://dx.doi.org/10.1097/01.rli.0000242807.01818.24] [PMID: 17035872]
[13]
Seeliger, E.; Lenhard, D.C.; Persson, P.B. Contrast media viscosity versus osmolality in kidney injury: lessons from animal studies. BioMed Res. Int., 2014, 2014358136
[http://dx.doi.org/10.1155/2014/358136] [PMID: 24707482]
[14]
Andreucci, M.; Faga, T.; Pisani, A.; Sabbatini, M.; Michael, A. Acute kidney injury by radiographic contrast media: pathogenesis and prevention. BioMed Res. Int., 2014, 2014362725
[http://dx.doi.org/10.1155/2014/362725] [PMID: 25197639]
[15]
Myers, S.I.; Wang, L.; Liu, F.; Bartula, L.L. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. J. Vasc. Surg., 2006, 44(2), 383-391.
[http://dx.doi.org/10.1016/j.jvs.2006.04.036] [PMID: 16890873]
[16]
Zhang, Y.; Wang, J.; Yang, X.; Wang, X.; Zhang, J.; Fang, J.; Jiang, X. The serial effect of iodinated contrast media on renal hemodynamics and oxygenation as evaluated by ASL and BOLD MRI. Contrast Media Mol. Imaging, 2012, 7(4), 418-425.
[http://dx.doi.org/10.1002/cmmi.1468] [PMID: 22649048]
[17]
Tan, X.; Zheng, X.; Huang, Z.; Lin, J.; Xie, C.; Lin, Y. Involvement of S100A8/A9-TLR4-NLRP3 inflammasome pathway in contrast-induced acute kidney injury. Cell. Physiol. Biochem., 2017, 43(1), 209-222.
[http://dx.doi.org/10.1159/000480340] [PMID: 28854431]
[18]
Andreucci, M.; Fuiano, G.; Presta, P.; Esposito, P.; Faga, T.; Bisesti, V.; Procino, A.; Altieri, V.; Tozzo, C.; Memoli, B.; Michael, A. Radiocontrast media cause dephosphorylation of Akt and downstream signaling targets in human renal proximal tubular cells. Biochem. Pharmacol., 2006, 72(10), 1334-1342.
[http://dx.doi.org/10.1016/j.bcp.2006.08.008] [PMID: 16989777]
[19]
Heyman, S.N.; Khamaisi, M.; Rosen, S.; Rosenberger, C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am. J. Nephrol., 2008, 28(6), 998-1006.
[http://dx.doi.org/10.1159/000146075] [PMID: 18635927]
[20]
Kelly, K.J. Acute renal failure: much more than a kidney disease. Semin. Nephrol., 2006, 26(2), 105-113.
[http://dx.doi.org/10.1016/j.semnephrol.2005.09.003] [PMID: 16530603]
[21]
Giacoppo, D.; Madhavan, M.V.; Baber, U.; Warren, J.; Bansilal, S.; Witzenbichler, B.; Dangas, G.D.; Kirtane, A.J.; Xu, K.; Kornowski, R.; Brener, S.J.; Généreux, P.; Stone, G.W.; Mehran, R. Impact of contrast-induced acute kidney injury after percutaneous coronary intervention on short- and long-term outcomes: pooled analysis from the HORIZONS-AMI and ACUITY trials. Circ. Cardiovasc. Interv., 2015, 8(8)e002475
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.002475] [PMID: 26198286]
[22]
Caspi, O.; Habib, M.; Cohen, Y.; Kerner, A.; Roguin, A.; Abergel, E.; Boulos, M.; Kapeliovich, M.R.; Beyar, R.; Nikolsky, E.; Aronson, D. Acute kidney injury after primary angioplasty: is contrast-induced nephropathy the culprit? J. Am. Heart Assoc., 2017, 6(6)e005715
[http://dx.doi.org/10.1161/JAHA.117.005715] [PMID: 28647690]
[23]
Azzalini, L.; Vilca, L.M.; Lombardo, F.; Poletti, E.; Laricchia, A.; Beneduce, A.; Maccagni, D.; Demir, O.M.; Slavich, M.; Giannini, F.; Carlino, M.; Margonato, A.; Cappelletti, A.; Colombo, A. Incidence of contrast-induced acute kidney injury in a large cohort of all-comers undergoing percutaneous coronary intervention: comparison of five contrast media. Int. J. Cardiol., 2018, 273, 69-73.
[http://dx.doi.org/10.1016/j.ijcard.2018.08.097] [PMID: 30196995]
[24]
Kooiman, J.; van de Peppel, W.R.; Sijpkens, Y.W.; Brulez, H.F.; de Vries, P.M.; Nicolaie, M.A.; Putter, H.; Huisman, M.V.; van der Kooij, W.; van Kooten, C.; Rabelink, T.J. No increase in kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin excretion following intravenous contrast enhanced-CT. Eur. Radiol., 2015, 25(7), 1926-1934.
[http://dx.doi.org/10.1007/s00330-015-3624-4] [PMID: 25773936]
[25]
Newhouse, J.H.; Kho, D.; Rao, Q.A.; Starren, J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am. J. Roentgenol., 2008, 191(2), 376-382.
[http://dx.doi.org/10.2214/AJR.07.3280] [PMID: 18647905]
[26]
Cowland, J.B.; Borregaard, N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics, 1997, 45(1), 17-23.
[http://dx.doi.org/10.1006/geno.1997.4896] [PMID: 9339356]
[27]
Nickolas, T.L.; Schmidt-Ott, K.M.; Canetta, P.; Forster, C.; Singer, E.; Sise, M.; Elger, A.; Maarouf, O.; Sola-Del Valle, D.A.; O’Rourke, M.; Sherman, E.; Lee, P.; Geara, A.; Imus, P.; Guddati, A.; Polland, A.; Rahman, W.; Elitok, S.; Malik, N.; Giglio, J.; El-Sayegh, S.; Devarajan, P.; Hebbar, S.; Saggi, S.J.; Hahn, B.; Kettritz, R.; Luft, F.C.; Barasch, J. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol., 2012, 59(3), 246-255.
[http://dx.doi.org/10.1016/j.jacc.2011.10.854] [PMID: 22240130]
[28]
Haase, M.; Devarajan, P.; Haase-Fielitz, A.; Bellomo, R.; Cruz, D.N.; Wagener, G.; Krawczeski, C.D.; Koyner, J.L.; Murray, P.; Zappitelli, M.; Goldstein, S.L.; Makris, K.; Ronco, C.; Martensson, J.; Martling, C.R.; Venge, P.; Siew, E.; Ware, L.B.; Ikizler, T.A.; Mertens, P.R. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol., 2011, 57(17), 1752-1761.
[http://dx.doi.org/10.1016/j.jacc.2010.11.051] [PMID: 21511111]
[29]
Paragas, N.; Qiu, A.; Zhang, Q.; Samstein, B.; Deng, S.X.; Schmidt-Ott, K.M.; Viltard, M.; Yu, W.; Forster, C.S.; Gong, G.; Liu, Y.; Kulkarni, R.; Mori, K.; Kalandadze, A.; Ratner, A.J.; Devarajan, P.; Landry, D.W.; D’Agati, V.; Lin, C.S.; Barasch, J. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med., 2011, 17(2), 216-222.
[http://dx.doi.org/10.1038/nm.2290] [PMID: 21240264]
[30]
McCullough, P.A. Contrast-induced acute kidney injury. J. Am. Coll. Cardiol., 2008, 51(15), 1419-1428.
[http://dx.doi.org/10.1016/j.jacc.2007.12.035] [PMID: 18402894]
[31]
Romano, G.; Briguori, C.; Quintavalle, C.; Zanca, C.; Rivera, N.V.; Colombo, A.; Condorelli, G. Contrast agents and renal cell apoptosis. Eur. Heart J., 2008, 29(20), 2569-2576.
[http://dx.doi.org/10.1093/eurheartj/ehn197] [PMID: 18468994]
[32]
Quintavalle, C.; Anselmi, C.V.; De Micco, F.; Roscigno, G.; Visconti, G.; Golia, B.; Focaccio, A.; Ricciardelli, B.; Perna, E.; Papa, L.; Donnarumma, E.; Condorelli, G.; Briguori, C. Neutrophil gelatinase-associated lipocalin and contrast-induced acute kidney injury. Circ. Cardiovasc. Interv., 2015, 8(9)e002673
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.115.002673] [PMID: 26333343]
[33]
Nusca, A.; Miglionico, M.; Proscia, C.; Ragni, L.; Carassiti, M.; Lassandro Pepe, F.; Di Sciascio, G. Early prediction of contrast-induced acute kidney injury by a “bedside” assessment of neutrophil gelatinase-associated lipocalin during elective percutaneous coronary interventions. PLoS One, 2018, 13(5)e0197833
[http://dx.doi.org/10.1371/journal.pone.0197833] [PMID: 29791495]
[34]
Tasanarong, A.; Hutayanon, P.; Piyayotai, D. Urinary neutrophil gelatinase-associated lipocalin predicts the severity of contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. BMC Nephrol., 2013, 14, 270.
[http://dx.doi.org/10.1186/1471-2369-14-270] [PMID: 24305547]
[35]
Kafkas, N.; Liakos, C.; Zoubouloglou, F.; Dagadaki, O.; Dragasis, S.; Makris, K. Neutrophil gelatinase-associated lipocalin as an early marker of contrast-induced nephropathy after elective invasive cardiac procedures. Clin. Cardiol., 2016, 39(8), 464-470.
[http://dx.doi.org/10.1002/clc.22551] [PMID: 27175937]
[36]
Ribitsch, W.; Schilcher, G.; Quehenberger, F.; Pilz, S.; Portugaller, R.H.; Truschnig-Wilders, M.; Zweiker, R.; Brodmann, M.; Stiegler, P.; Rosenkranz, A.R.; Pickering, J.W.; Horina, J.H. Neutrophil gelatinase-associated lipocalin (NGAL) fails as an early predictor of contrast induced nephropathy in chronic kidney disease (ANTI-CI-AKI study). Sci. Rep., 2017, 7, 41300.
[http://dx.doi.org/10.1038/srep41300] [PMID: 28128223]
[37]
Andreucci, M.; Faga, T.; Riccio, E.; Sabbatini, M.; Pisani, A.; Michael, A. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int. J. Nephrol. Renovasc. Dis., 2016, 9, 205-221.
[http://dx.doi.org/10.2147/IJNRD.S105124] [PMID: 27672338]
[38]
Ichimura, T.; Asseldonk, E.J.; Humphreys, B.D.; Gunaratnam, L.; Duffield, J.S.; Bonventre, J.V. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest., 2008, 118(5), 1657-1668.
[http://dx.doi.org/10.1172/JCI34487] [PMID: 18414680]
[39]
Bonventre, J.V. Kidney injury molecule-1: a translational journey. Trans. Am. Clin. Climatol. Assoc., 2014, 125, 293-299.
[PMID: 25125746]
[40]
Kooiman, J.; Sijpkens, Y.W.; de Vries, J.P.; Brulez, H.F.; Hamming, J.F.; van der Molen, A.J.; Aarts, N.J.; Cannegieter, S.C.; Putter, H.; Swarts, R.; van den Hout, W.B.; Rabelink, T.J.; Huisman, M.V. A randomized comparison of 1-h sodium bicarbonate hydration versus standard peri-procedural saline hydration in patients with chronic kidney disease undergoing intravenous contrast-enhanced computerized tomography. Nephrol. Dial. Transplant., 2014, 29(5), 1029-1036.
[http://dx.doi.org/10.1093/ndt/gfu025] [PMID: 24578471]
[41]
Bonventre, J.V. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol. Dial. Transplant., 2009, 24(11), 3265-3268.
[http://dx.doi.org/10.1093/ndt/gfp010] [PMID: 19318357]
[42]
Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int., 2002, 62(1), 237-244.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00433.x] [PMID: 12081583]
[43]
Li, W.; Yu, Y.; He, H.; Chen, J.; Zhang, D. Urinary kidney injury molecule-1 as an early indicator to predict contrast-induced acute kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention. Biomed. Rep., 2015, 3(4), 509-512.
[http://dx.doi.org/10.3892/br.2015.449] [PMID: 26171157]
[44]
Vijayasimha, M.; Vijaya Padma, V.; Mujumdar, S.K.D.; Satyanarayana, P.V.V. Kidney injury molecule-1: a urinary biomarker for contrast induced acute kidney injury. Adv Life Sci Technol, 2013, 15, 33-40.
[45]
Sabbisetti, V.S.; Waikar, S.S.; Antoine, D.J.; Smiles, A.; Wang, C.; Ravisankar, A.; Ito, K.; Sharma, S.; Ramadesikan, S.; Lee, M.; Briskin, R.; De Jager, P.L.; Ngo, T.T.; Radlinski, M.; Dear, J.W.; Park, K.B.; Betensky, R.; Krolewski, A.S.; Bonventre, J.V. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol., 2014, 25(10), 2177-2186.
[http://dx.doi.org/10.1681/ASN.2013070758] [PMID: 24904085]
[46]
Liangos, O.; Perianayagam, M.C.; Vaidya, V.S.; Han, W.K.; Wald, R.; Tighiouart, H.; MacKinnon, R.W.; Li, L.; Balakrishnan, V.S.; Pereira, B.J.; Bonventre, J.V.; Jaber, B.L. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J. Am. Soc. Nephrol., 2007, 18(3), 904-912.
[http://dx.doi.org/10.1681/ASN.2006030221] [PMID: 17267747]
[47]
Han, W.K.; Wagener, G.; Zhu, Y.; Wang, S.; Lee, H.T. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin. J. Am. Soc. Nephrol., 2009, 4(5), 873-882.
[http://dx.doi.org/10.2215/CJN.04810908] [PMID: 19406962]
[48]
Al-Tu’ma, F.J.; Dheyauldeen, M.H.; Al-Saeghb, R.M. Measurement of urinary kidney injury molecule-1 as a predictive biomarker of contrast-induced acute kidney injury. J. Contemp. Med. Sci., 2017, 3(9), 178-181.
[49]
Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev., 2018, 281(1), 138-153.
[http://dx.doi.org/10.1111/imr.12616] [PMID: 29247988]
[50]
Hardy, J.; Hambly, B.; Ko, H.; Wyburn, K.; Eris, J.; Yin, J. Stimulation of mesangial cells by angiotensin II and lipopolysaccharide increases expression of interleukin-18, but not IL-18 receptor. Nephron, Exp. Nephrol., 2010, 116(4), e63-e71.
[http://dx.doi.org/10.1159/000319319] [PMID: 20664297]
[51]
He, H.; Li, W.; Qian, W.; Zhao, X.; Wang, L.; Yu, Y.; Liu, J.; Cheng, J. Urinary interleukin-18 as an early indicator to predict contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Exp. Ther. Med., 2014, 8(4), 1263-1266.
[http://dx.doi.org/10.3892/etm.2014.1898] [PMID: 25187836]
[52]
Lin, X.; Yuan, J.; Zhao, Y.; Zha, Y. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J. Nephrol., 2015, 28(1), 7-16.
[http://dx.doi.org/10.1007/s40620-014-0113-9] [PMID: 24899123]
[53]
Ling, W.; Zhaohui, N.; Ben, H.; Leyi, G.; Jianping, L.; Huili, D.; Jiaqi, Q. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin. Pract., 2008, 108(3), c176-c181.
[http://dx.doi.org/10.1159/000117814] [PMID: 18287807]
[54]
Parikh, C.R.; Mishra, J.; Thiessen-Philbrook, H.; Dursun, B.; Ma, Q.; Kelly, C.; Dent, C.; Devarajan, P.; Edelstein, C.L. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int., 2006, 70(1), 199-203.
[http://dx.doi.org/10.1038/sj.ki.5001527] [PMID: 16710348]
[55]
Liu, Y.; Guo, W.; Zhang, J.; Xu, C.; Yu, S.; Mao, Z.; Wu, J.; Ye, C.; Mei, C.; Dai, B. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am. J. Kidney Dis., 2013, 62(6), 1058-1067.
[http://dx.doi.org/10.1053/j.ajkd.2013.05.014] [PMID: 23830182]
[56]
Bulent Gul, C.B.; Gullulu, M.; Oral, B.; Aydinlar, A.; Oz, O.; Budak, F.; Yilmaz, Y.; Yurtkuran, M. Urinary IL-18: a marker of contrast-induced nephropathy following percutaneous coronary intervention? Clin. Biochem., 2008, 41(7-8), 544-547.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.01.002] [PMID: 18237555]
[57]
de Geus, H.R.; Betjes, M.G.; Bakker, J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin. Kidney J., 2012, 5(2), 102-108.
[http://dx.doi.org/10.1093/ckj/sfs008] [PMID: 22833807]
[58]
Ferguson, M.A.; Vaidya, V.S.; Waikar, S.S.; Collings, F.B.; Sunderland, K.E.; Gioules, C.J.; Bonventre, J.V. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int., 2010, 77(8), 708-714.
[http://dx.doi.org/10.1038/ki.2009.422] [PMID: 19940842]
[59]
Yamamoto, T.; Noiri, E.; Ono, Y.; Doi, K.; Negishi, K.; Kamijo, A.; Kimura, K.; Fujita, T.; Kinukawa, T.; Taniguchi, H.; Nakamura, K.; Goto, M.; Shinozaki, N.; Ohshima, S.; Sugaya, T. Renal L-type fatty acid--binding protein in acute ischemic injury. J. Am. Soc. Nephrol., 2007, 18(11), 2894-2902.
[http://dx.doi.org/10.1681/ASN.2007010097] [PMID: 17942962]
[60]
Oezkur, M.; Gorski, A.; Peltz, J.; Wagner, M.; Lazariotou, M.; Schimmer, C.; Heuschmann, P.U.; Leyh, R.G. Preoperative serum h-FABP concentration is associated with postoperative incidence of acute kidney injury in patients undergoing cardiac surgery. BMC Cardiovasc. Disord., 2014, 14, 117.
[http://dx.doi.org/10.1186/1471-2261-14-117] [PMID: 25212385]
[61]
Manabe, K.; Kamihata, H.; Motohiro, M.; Senoo, T.; Yoshida, S.; Iwasaka, T. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of contrast-induced acute kidney injury. Eur. J. Clin. Invest., 2012, 42(5), 557-563.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02620.x] [PMID: 22070248]
[62]
Portilla, D.; Dent, C.; Sugaya, T.; Nagothu, K.K.; Kundi, I.; Moore, P.; Noiri, E.; Devarajan, P. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int., 2008, 73(4), 465-472.
[http://dx.doi.org/10.1038/sj.ki.5002721] [PMID: 18094680]
[63]
Katagiri, D.; Doi, K.; Honda, K.; Negishi, K.; Fujita, T.; Hisagi, M.; Ono, M.; Matsubara, T.; Yahagi, N.; Iwagami, M.; Ohtake, T.; Kobayashi, S.; Sugaya, T.; Noiri, E. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann. Thorac. Surg., 2012, 93(2), 577-583.
[http://dx.doi.org/10.1016/j.athoracsur.2011.10.048] [PMID: 22269724]
[64]
Bachorzewska-Gajewska, H.; Poniatowski, B.; Dobrzycki, S. NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine. Adv. Med. Sci., 2009, 54(2), 221-224.
[http://dx.doi.org/10.2478/v10039-009-0036-1] [PMID: 19875355]
[65]
Hayashi, M.; Izawa, H. Recent prophylactic strategies and novel biomarkers for contrast-induced acute kidney injury. OA Nephrology, 2014, 2(1), 1.
[66]
Li, Y.; Zhu, M.; Xia, Q.; Wang, S.; Qian, J.; Lu, R.; Che, M.; Dai, H.; Wu, Q.; Ni, Z.; Lindholm, B.; Axelsson, J.; Yan, Y. Urinary neutrophil gelatinase-associated lipocalin and L-type fatty acid binding protein as diagnostic markers of early acute kidney injury after liver transplantation. Biomarkers, 2012, 17(4), 336-342.
[http://dx.doi.org/10.3109/1354750X.2012.672458] [PMID: 22455661]
[67]
Yuan, Y.; Qiu, H.; Hu, X.; Luo, T.; Gao, X.; Zhao, X.; Zhang, J.; Wu, Y.; Qiao, S.; Yang, Y.; Gao, R. Predictive value of inflammatory factors on contrast-induced acute kidney injury in patients who underwent an emergency percutaneous coronary intervention. Clin. Cardiol., 2017, 40(9), 719-725.
[http://dx.doi.org/10.1002/clc.22722] [PMID: 28543803]
[68]
Toso, A.; Leoncini, M.; Maioli, M.; Tropeano, F.; Di Vincenzo, E.; Villani, S.; Bellandi, F. Relationship between inflammation and benefits of early high-dose rosuvastatin on contrast-induced nephropathy in patients with acute coronary syndrome: the pathophysiological link in the PRATO-ACS study (protective effect of rosuvastatin and antiplatelet therapy on contrast-induced nephropathy and myocardial damage in patients with acute coronary syndrome undergoing coronary intervention). JACC Cardiovasc. Interv., 2014, 7(12), 1421-1429.
[http://dx.doi.org/10.1016/j.jcin.2014.06.023] [PMID: 25523533]
[69]
Lu, Z.; Wang, F.; Liang, M. SerpinC1/Antithrombin III in kidney-related diseases. Clin. Sci. (Lond.), 2017, 131(9), 823-831.
[http://dx.doi.org/10.1042/CS20160669] [PMID: 28424376]
[70]
Wu, R.; Kong, Y.; Yin, J.; Liang, R.; Lu, Z.; Wang, N.; Zhao, Q.; Zhou, Y.; Yan, C.; Wang, F.; Liang, M. Antithrombin III is a novel predictor for contrast induced nephropathy after coronary angiography. Kidney Blood Press. Res., 2018, 43(1), 170-180.
[http://dx.doi.org/10.1159/000487499] [PMID: 29466798]
[71]
Yin, J.; Wang, F.; Kong, Y.; Wu, R.; Zhang, G.; Wang, N.; Wang, L.; Lu, Z.; Liang, M. Antithrombin III prevents progression of chronic kidney disease following experimental ischaemic-reperfusion injury. J. Cell. Mol. Med., 2017, 21(12), 3506-3514.
[http://dx.doi.org/10.1111/jcmm.13261] [PMID: 28767184]
[72]
Mosa, O.; Skitek, M.; Jerin, A. Validity of Klotho, CYR61 and YKL-40 as ideal predictive biomarkers for acute kidney injury: review study. Sao Paulo Med. J., 2017, 135(1), 57-65.
[http://dx.doi.org/10.1590/1516-3180.2016.0099220516] [PMID: 27759760]
[73]
Ober, C.; Chupp, G.L. The chitinase and chitinase-like proteins: a review of genetic and functional studies in asthma and immune-mediated diseases. Curr. Opin. Allergy Clin. Immunol., 2009, 9(5), 401-408.
[http://dx.doi.org/10.1097/ACI.0b013e3283306533] [PMID: 19644363]
[74]
Schmidt, I.M.; Hall, I.E.; Kale, S.; Lee, S.; He, C.H.; Lee, Y.; Chupp, G.L.; Moeckel, G.W.; Lee, C.G.; Elias, J.A.; Parikh, C.R.; Cantley, L.G. Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function. J. Am. Soc. Nephrol., 2013, 24(2), 309-319.
[http://dx.doi.org/10.1681/ASN.2012060579] [PMID: 23291472]
[75]
Lee, C.G.; Hartl, D.; Lee, G.R.; Koller, B.; Matsuura, H.; Da Silva, C.A.; Sohn, M.H.; Cohn, L.; Homer, R.J.; Kozhich, A.A.; Humbles, A.; Kearley, J.; Coyle, A.; Chupp, G.; Reed, J.; Flavell, R.A.; Elias, J.A. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J. Exp. Med., 2009, 206(5), 1149-1166.
[http://dx.doi.org/10.1084/jem.20081271] [PMID: 19414556]
[76]
Hall, I.E.; Stern, E.P.; Cantley, L.G.; Elias, J.A.; Parikh, C.R. Urine YKL-40 is associated with progressive acute kidney injury or death in hospitalized patients. BMC Nephrol., 2014, 15, 133.
[http://dx.doi.org/10.1186/1471-2369-15-133] [PMID: 25128003]
[77]
De Loor, J.; Decruyenaere, J.; Demeyere, K.; Nuytinck, L.; Hoste, E.A.; Meyer, E. Urinary chitinase 3-like protein 1 for early diagnosis of acute kidney injury: a prospective cohort study in adult critically ill patients. Crit. Care, 2016, 20(1), 38.
[http://dx.doi.org/10.1186/s13054-016-1192-x] [PMID: 26864834]
[78]
Parikh, C.R.; Liu, C.; Mor, M.K.; Palevsky, P.M.; Kaufman, J.S.; Philbrook, H.T.; Weisbord, S.D. Kidney biomarkers of injury and repair as predictors of contrast-associated AKI: a substudy of the PRESERVE trial. Am. J. Kidney Dis., 2020, 75(2), 187-197.
[http://dx.doi.org/10.1053/j.ajkd.2019.06.011]] [PMID: 31547939]
[79]
Wang, Z.; Bao, W.; Zou, X.; Tan, P.; Chen, H.; Lai, C.; Liu, D.; Luo, Z.; Huang, M. Co-expression analysis reveals dysregulated miRNAs and miRNA-mRNA interactions in the development of contrast-induced acute kidney injury. PLoS One, 2019, 14(7)e021857
[http://dx.doi.org/10.1371/journal.pone.0218574] [PMID: 31306435]
[80]
Flynt, A.S.; Lai, E.C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat. Rev. Genet., 2008, 9(11), 831-842.
[http://dx.doi.org/10.1038/nrg2455] [PMID: 18852696]
[81]
Saikumar, J.; Hoffmann, D.; Kim, T.M.; Gonzalez, V.R.; Zhang, Q.; Goering, P.L.; Brown, R.P.; Bijol, V.; Park, P.J.; Waikar, S.S.; Vaidya, V.S. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol. Sci., 2012, 129(2), 256-267.
[http://dx.doi.org/10.1093/toxsci/kfs210] [PMID: 22705808]
[82]
Amrouche, L.; Desbuissons, G.; Rabant, M.; Sauvaget, V.; Nguyen, C.; Benon, A.; Barre, P.; Rabaté, C.; Lebreton, X.; Gallazzini, M.; Legendre, C.; Terzi, F.; Anglicheau, D. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J. Am. Soc. Nephrol., 2017, 28(2), 479-493.
[http://dx.doi.org/10.1681/ASN.2016010045] [PMID: 27444565]
[83]
Lan, Y.F.; Chen, H.H.; Lai, P.F.; Cheng, C.F.; Huang, Y.T.; Lee, Y.C.; Chen, T.W.; Lin, H. MicroRNA-494 reduces ATF3 expression and promotes AKI. J. Am. Soc. Nephrol., 2012, 23(12), 2012-2023.
[http://dx.doi.org/10.1681/ASN.2012050438] [PMID: 23160513]
[84]
Bhatt, K.; Zhou, L.; Mi, Q.S.; Huang, S.; She, J.X.; Dong, Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med., 2010, 16(9-10), 409-416.
[http://dx.doi.org/10.2119/molmed.2010.00002] [PMID: 20386864]
[85]
Parikh, C.R.; Thiessen-Philbrook, H.; Garg, A.X.; Kadiyala, D.; Shlipak, M.G.; Koyner, J.L.; Edelstein, C.L.; Devarajan, P.; Patel, U.D.; Zappitelli, M.; Krawczeski, C.D.; Passik, C.S.; Coca, S.G. TRIBE-AKI Consortium. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol., 2013, 8(7), 1079-1088.
[http://dx.doi.org/10.2215/CJN.10971012] [PMID: 23599408]
[86]
Kerr, K.F.; Roth, J.; Zhu, K.; Thiessen-Philbrook, H.; Meisner, A.; Wilson, F.P.; Coca, S.; Parikh, C.R. Evaluating biomarkers for prognostic enrichment of clinical trials. Clin. Trials, 2017, 14(6), 629-638.
[http://dx.doi.org/10.1177/1740774517723588] [PMID: 28795578]
[87]
McCullough, P.A. Radiocontrast-induced acute kidney injury. Nephron, Physiol., 2008, 109(4), 61-72.
[http://dx.doi.org/10.1159/000142938] [PMID: 18802377]
[88]
Weisbord, S.D.; Chen, H.; Stone, R.A.; Kip, K.E.; Fine, M.J.; Saul, M.I.; Palevsky, P.M. Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J. Am. Soc. Nephrol., 2006, 17(10), 2871-2877.
[http://dx.doi.org/10.1681/ASN.2006030301] [PMID: 16928802]
[89]
Sun, S.Q.; Zhang, T.; Ding, D.; Zhang, W.F.; Wang, X.L.; Sun, Z.; Hu, L.H.; Qin, S.Y.; Shen, L.H.; He, B. Circulating microRNA-188, -30a, and -30e as early biomarkers for contrast-induced acute kidney injury. J. Am. Heart Assoc., 2016, 5(8)e004138
[http://dx.doi.org/10.1161/JAHA.116.004138] [PMID: 27528406]
[90]
Gandhi, S.; Mosleh, W.; Abdel-Qadir, H.; Farkouh, M.E. Statins and contrast-induced acute kidney injury with coronary angiography. Am. J. Med., 2014, 127(10), 987-1000.
[http://dx.doi.org/10.1016/j.amjmed.2014.05.011] [PMID: 24852935]
[91]
Queiroz, R.E.B.; de Oliveira, L.S.N.; de Albuquerque, C.A. Santana, Cde.A.; Brasil, P.M.; Carneiro, L.L.; Libório, A.B. Acute kidney injury risk in patients with ST-segment elevation myocardial infarction at presentation to the ED. Am. J. Emerg. Med., 2012, 30(9), 1921-1927.
[http://dx.doi.org/10.1016/j.ajem.2012.04.011] [PMID: 22795418]
[92]
Avci, E.; Yeşil, M.; Bayata, S.; Postaci, N.; Arikan, E.; Cirit, M. The role of nebivolol in the prevention of contrast-induced nephropathy in patients with renal dysfunction. Anadolu Kardiyol. Derg., 2011, 11(7), 613-617.
[http://dx.doi.org/10.5152/akd.2011.164] [PMID: 21959875]
[93]
Altunoren, O.; Balli, M.; Eren, N.; Tasolar, H.; Arpaci, A.; Caglayan, C.E.; Yavuz, Y.C.; Gungor, O. Is nebivolol really effective in preventing contrast induced nephropathy? Kidney Blood Press. Res., 2015, 40(5), 533-541.
[http://dx.doi.org/10.1159/000368529] [PMID: 26496491]
[94]
Ren, X.P.; Wu, J.; Wang, X.; Sartor, M.A.; Jones, K.; Qian, J.; Nicolaou, P.; Pritchard, T.J.; Fan, G.C. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 2009, 119(17), 2357-2366.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.814145] [PMID: 19380620]
[95]
Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; Castoldi, M.; Soutschek, J.; Koteliansky, V.; Rosenwald, A.; Basson, M.A.; Licht, J.D.; Pena, J.T.; Rouhanifard, S.H.; Muckenthaler, M.U.; Tuschl, T.; Martin, G.R.; Bauersachs, J.; Engelhardt, S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224), 980-984.
[http://dx.doi.org/10.1038/nature07511] [PMID: 19043405]
[96]
Godwin, J.G.; Ge, X.; Stephan, K.; Jurisch, A.; Tullius, S.G.; Iacomini, J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14339-14344.
[http://dx.doi.org/10.1073/pnas.0912701107] [PMID: 20651252]
[97]
Lorenzen, J.M.; Kielstein, J.T.; Hafer, C.; Gupta, S.K.; Kümpers, P.; Faulhaber-Walter, R.; Haller, H.; Fliser, D.; Thum, T. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin. J. Am. Soc. Nephrol., 2011, 6(7), 1540-1546.
[http://dx.doi.org/10.2215/CJN.00430111] [PMID: 21700819]
[98]
Almendarez, M.; Gurm, H.S.; Mariani, J., Jr; Montorfano, M.; Brilakis, E.S.; Mehran, R.; Azzalini, L. Procedural strategies to reduce the incidence of contrast-induced acute kidney injury during percutaneous coronary intervention. JACC Cardiovasc. Interv., 2019, 12(19), 1877-1888.
[http://dx.doi.org/10.1016/j.jcin.2019.04.055] [PMID: 31521648]
[99]
Mueller, C.; Buerkle, G.; Buettner, H.J.; Petersen, J.; Perruchoud, A.P.; Eriksson, U.; Marsch, S.; Roskamm, H. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch. Intern. Med., 2002, 162(3), 329-336.
[http://dx.doi.org/10.1001/archinte.162.3.329] [PMID: 11822926]
[100]
Hoste, E.A.; De Waele, J.J.; Gevaert, S.A.; Uchino, S.; Kellum, J.A. Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol. Dial. Transplant., 2010, 25(3), 747-758.
[http://dx.doi.org/10.1093/ndt/gfp389] [PMID: 19703838]
[101]
Igarashi, G.; Iino, K.; Watanabe, H.; Ito, H. Remote ischemic pre-conditioning alleviates contrast-induced acute kidney injury in patients with moderate chronic kidney disease. Circ. J., 2013, 77(12), 3037-3044.
[http://dx.doi.org/10.1253/circj.CJ-13-0171] [PMID: 23986081]
[102]
Liu, J.; Sun, G.; He, Y.; Song, F.; Chen, S.; Guo, Z.; Liu, B.; Lei, L.; He, L.; Chen, J.; Tan, N.; Liu, Y. Early β-blockers administration might be associated with a reduced risk of contrast-induced acute kidney injury in patients with acute myocardial infarction. J. Thorac. Dis., 2019, 11(4), 1589-1596.
[http://dx.doi.org/10.21037/jtd.2019.04.65] [PMID: 31179103]
[103]
Er, F.; Nia, A.M.; Dopp, H.; Hellmich, M.; Dahlem, K.M.; Caglayan, E.; Kubacki, T.; Benzing, T.; Erdmann, E.; Burst, V.; Gassanov, N. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (renal protection trial). Circulation, 2012, 126(3), 296-303.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.096370] [PMID: 22735306]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy