Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Review: Studies on the Synthesis of Quinolone Derivatives with Their Antibacterial Activity (Part 1)

Author(s): Anil Kumar, Nishtha Saxena, Arti Mehrotra and Nivedita Srivastava*

Volume 24, Issue 8, 2020

Page: [817 - 854] Pages: 38

DOI: 10.2174/1385272824999200427082108

Price: $65

Open Access Journals Promotions 2
Abstract

Quinolone derivatives have attracted considerable attention due to their medicinal properties. This review covers many synthetic routes of quinolones preparation with their antibacterial properties. Detailed study with structure-activity relationship among quinolone derivatives will be helpful in designing new drugs in this field.

Keywords: Quinolones, fluoroquinolones, antibacterial, biological activity, naphthyridine, synthesis.

Graphical Abstract
[1]
Catherine, M.O.; Pharm, D.; Gary, M.D. Quinolones: a comprehensive review. Am. Fam. Physician, 2002, 65(3), 455-465.
[PMID: 11858629]
[2]
Monk, J.P.; Richards, D.M.C. Ofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 1987, 33(4), 346-391.
[http://dx.doi.org/10.2165/00003495-198733040-00003] [PMID: 3297617]
[3]
Saito, H.; Tomioka, H.; Sato, K.; Dekio, S. In vitro and in vivo antimycobacterial activities of a new quinolone, DU-6859a. Antimicrob. Agents Chemother., 1994, 38(12), 2877-2882.
[http://dx.doi.org/10.1128/AAC.38.12.2877] [PMID: 7695276]
[4]
Price, J.R. Alkaloids of the Australian Rutaceae: Melicope fareana. IV. Some reactions of 1-methyl-4-quinolone-3-carboxyic acid, a degradation product of the alkaloids. Aust. J. Sci. Res., 1949, 2, 272-281.
[http://dx.doi.org/10.1071/PH490272]
[5]
Giguere, R.J.; Bray, T.L.; Duncan, S.M. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27, 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[6]
Mogilaiah, K.; Srinivas, K.; Sudhakar, G.R. Chloramine-T mediated synthesis of 1,8-naphthyridinyl-1,3,4-oxadiazoles. Indian J. Chem., 2004, 43B, 2014-2017.
[http://dx.doi.org/10.1071/PH490272]
[7]
Irikura, T. Pyrazolo 1, 5-a! pyridines. U.S. Patent, 4,097,483. June 27;1978
[8]
Lesher, G.Y.; Froelich, E.D.; Grant, M.D.; Bailey, J.H.; Brundage, R.P. 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Chem., 1962, 5(5), 1063-1065.
[http://dx.doi.org/10.1021/jm01240a021] [PMID: 14056431]
[9]
Gootz, T.D.; Brighty, K.E. Fluoroquinolone antibacterials: SAR mechanism of action, resistance, and clinical aspects. Med. Res. Rev., 1996, 16(5), 433-486.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199609)16:5<433:AID-MED3>3.0.CO;2-W] [PMID: 8865150]
[10]
Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J. Med. Chem., 1980, 23(12), 1358-1363.
[http://dx.doi.org/10.1021/jm00186a014] [PMID: 7452690]
[11]
(a)Sanjay, K.S.; Chauhan, P.M.S.; Bhaduri, A.P.; Fatima, N.; Chatterjee, R.K. Quinolones: novel probes in antifilarial chemotheraphy. J. Med. Chem., 2000, 43, 2275-2279.
[http://dx.doi.org/10.1021/jm990438d] [PMID: 10841806]
(b)Krishnan, R.; Lang, S.A. Antibacterial activity of 6,8-disubstituted-quinolone-3-carboxylic acids. J. Pharm. Sci., 1986, 75(12), 1185-1187.
[http://dx.doi.org/10.1002/jps.2600751214] [PMID: 3104580]
(c)Sanna, P.; Sequi, P.A.; Piras, S.; Paglietti, G. Reaction of 5-aminobenzotriazoles with methyl propiolate. formation of triazolo[4,5-f]quinolines and related compounds. Unusual products in the Michael addition reaction of 2-methyl-2h-5-aminobenzotriazole. Heterocycles, 1995, 45, 2459-2474.
[http://dx.doi.org/10.3987/COM-95-7145]
[12]
Hermecz, I.; Keresztúri, G.; Debreczy, L.V. Aminomethylenemalonates and Their Use in Heterocyclic Synthesis, Chapter 5: Cyclization of 1- Aminoalkylidene malonates In: Advances in Heterocyclic Chemistry; Alan, R.K., Ed.; Academic Press, Inc. Harcourt Brace Jovanovich, Publishers,, 1992; Vol. 54, pp. 137-293.
[http://dx.doi.org/10.1016/S0065-2725(08)60667-4]
[13]
Gould, J.; Jacobs, W.A. The synthesis of certain substituted quinolines and 5,6-benzoquinolines. J. Am. Chem. Soc., 1939, 61, 2890-2895.
[http://dx.doi.org/10.1021/ja01265a088]
[14]
Hayashi, K.; Todo, Y.; Hamamato, S.; Ojima, K.; Yamada, M.; Kito, T.; Takahata, M.; Watanabe, Y.; Narita, H. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob. Agents Chemother., 1999, 43(5), 1077-1084.
[http://dx.doi.org/10.1128/aac.43.5.1077] [PMID: 10223917]
[15]
Minami, T.; Shono, T.; Matsumoto, J. Pyrido [2, 3-d] pyrimidine antibacterial agents. II. Piromidic acid and related compounds. Chem. Pharm. Bull., 1971, 19, 1426-1482.
[http://dx.doi.org/10.1248/cpb.19.1426]
[16]
Matsumoto, J.; Minami, S. Pyrido(2,3-d)pyrimidine antibacterial agents. 3. 8-Alkyl- and 8-vinyl-5,8-dihydro-5-oxo-2-(1-piperazinyl)pyrido(2,3-d)pyrimidine-6-carboxylic acids and their derivatives. J. Med. Chem., 1975, 18(1), 74-79.
[http://dx.doi.org/10.1021/jm00235a017] [PMID: 803246]
[17]
Chu, D.T.W. A regiospecific synthesis of 1-methylamino-6-fluoro-7- (4-methylpiperazin-1-yl)- 1,4-dihydro-4-oxoquinoline-3-carboxylic acid. J. Heterocycl. Chem., 1985, 22, 1033.
[http://dx.doi.org/10.1002/jhet.5570220421]
[18]
Sanchez, J.P.; Domagala, J.M.; Hagen, S.E.; Heifetz, C.L.; Hutt, M.P.; Nichols, J.B.; Trehan, A.K. Quinolone antibacterial agents. Synthesis and structure-activity relationships of 8-substituted quinoline-3-carboxylic acids and 1,8-naphthyridine-3-carboxylic acids. J. Med. Chem., 1988, 31(5), 983-991.
[http://dx.doi.org/10.1021/jm00400a016] [PMID: 3361584]
[19]
Wise, R.; Andrews, J.M.; Brenwald, N. The in-vitro activity of Bay y 3118, a new chlorofluoroquinolone. J. Antimicrob. Chemother., 1993, 31(1), 73-80.
[http://dx.doi.org/10.1093/jac/31.1.73] [PMID: 8383104]
[20]
Bauernfeind, A. Comparative in-vitro activities of the new quinolone, Bay y 3118, and ciprofloxacin, sparfloxacin, tosufloxacin, CI-960 and CI-990. J. Antimicrob. Chemother., 1993, 31(4), 505-522.
[http://dx.doi.org/10.1093/jac/31.4.505] [PMID: 7605398]
[21]
Takahata, M.; Mitsuyama, J.; Yamashiro, Y.; Yonezawa, M.; Araki, H.; Todo, Y.; Minami, S.; Watanabe, Y.; Narita, H. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob. Agents Chemother., 1999, 43(5), 1077-1084.
[http://dx.doi.org/10.1128/AAC.43.5.1077] [PMID: 10223917]
[22]
Wise, R.; Andrews, J.M.; Edwards, L. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. J. Antimicrob. Agents Chemother, 1983, 23, 559-564.
[http://dx.doi.org/10.1128/AAC.23.4.559]
[23]
Caekenberghe, D.L.V.; Pattyn, S.R. In vitro activity of ciprofloxacin compared with those of other new fluorinated piperazinyl-substituted quinoline derivatives. Antimicrob. Agents Chemother., 1984, 25, 518-521.
[http://dx.doi.org/10.1128/AAC.25.4.518] [PMID: 6732221]
[24]
Nakamurra, S.; Kuurobe, N.; Kashimoto, S.; Ohue, T.; Takase, Y.; Shimizu, M. Pharmacokinetics of AT-2266 administered orally to mice, rats, dogs, and monkeys. Antimicrob. Agents Chemother., 1983, 24, 54-60.
[http://dx.doi.org/10.1128/aac.24.1.54] [PMID: 6226241]
[25]
Hirose, T.; Mishio, S.; Matsumoto, J.; Minami, S. Pyridone-carboxylic acids as antibacterial agents. I. Synthesis and antibacterial activity of 1-alkyl-1,4-dihydro-4-oxo-1,8- and 1,6-naphthyridine-3-carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1982, 30(7), 2399-2409.
[http://dx.doi.org/10.1248/cpb.30.2399] [PMID: 7139814]
[26]
Matsumoto, J.; Miyamoto, T.; Minamida, A.; Nishimura, Y.; Egawa, H.; Nishimura, H. Pyridonecarboxylic acids as antibacterial agents. 2. Synthesis and structure-activity relationships of 1,6,7-trisubstituted 1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids, including enoxacin, a new antibacterial agent. J. Med. Chem., 1984, 27(3), 292-301.
[http://dx.doi.org/10.1021/jm00369a011] [PMID: 6422043]
[27]
Roe, A. Preparation of aromatic fluorine compounds from diazonium fluoborates: the Schiemann reaction. Org. React., 2004, 5, 193-228.
[http://dx.doi.org/10.1002/0471264180.or005.04]
[28]
Turner, F.J.; Ringel, S.M.J.F.; Storino, P.J.; Daly, J.M.; Schwatz, B.S. Oxolinic acid, a new synthetic antimicrobial agent. I. In vitro and in vivo activity. Antimicrob. Agents Chemother., 1967, 7, 475-479.
[PMID: 5596176]
[29]
Peterson, L.R. Quinolone molecular structure-activity relationships: What we have learned about improving antimicrobial activity. Clin. Infect. Dis., 2001, 33, 180-186.
[http://dx.doi.org/10.1086/321846]
[30]
Nakamura, S.; Minami, A.; Katae, H.; Inoue, S.; Yamagishi, J.; Takase, Y.; Shimizu, M. In vitro antibacterial properties of AT-2266, a new pyridonecarboxylic acid. Antimicrob. Agents Chemother., 1983, 23(5), 641-648.
[http://dx.doi.org/10.1128/AAC.23.5.641] [PMID: 6575721]
[31]
Albrecht, R. Development of antibacterial agents of the nalidixic acid type. Prog. Drug Res., 1977, 21, 9-104.
[http://dx.doi.org/10.1007/978-3-0348-7098-6_1] [PMID: 339272]
[32]
Chu, D.T.W.; Prabhavathi, B.; Fernandes, A.K.; Pihuleac, C.E.; Carl, W.; Nordeen, , Robert, E.; Maleczka, J.; Penent, A.G. Synthesis and structure-activity relationships of novel arylfluoroquinolone antibacterial agents. J. Med. Chem., 1985, 28, 1558-1564.
[http://dx.doi.org/10.1021/jm00149a003] [PMID: 3934382]
[33]
Agui, H.; Mitani, T.; Izawa, A.; Komatsu, T.; Nakagome, T. Studies on quinoline derivatives and related compounds. 5. Synthesis and antimicrobial activity of novel 1-alkoxy-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids. J. Med. Chem., 1977, 20(6), 791-796.
[http://dx.doi.org/10.1021/jm00216a010] [PMID: 406396]
[34]
Chu, D.T.W.; Fernandes, P.B.; Pernet, A.G. Synthesis and biological activity of benzothiazolo[3,2-a]quinolone antibacterial agents. J. Med. Chem., 1986, 29(8), 1531-1534.
[http://dx.doi.org/10.1021/jm00158a037] [PMID: 3090265]
[35]
Matsumoto, J.; Miyamoto, T.; Minamida, A.; Nishimura, Y.; Egawa, H.; Nishimura, H. Synthesis of fluorinated pyridines by the Balz‐Schiemann reaction. An alternative route to enoxacin, a new antibacterial pyridonecarboxylic acid. J. Heterocycl. Chem., 1984, 21, 673-679.
[http://dx.doi.org/10.1002/jhet.5570210309]
[36]
Wierenga, W.; Skulnick, H.I. General, efficient, one-step synthesis of beta.-keto esters. J. Org. Chem., 1979, 44, 310-311.
[http://dx.doi.org/10.1021/jo01316a039]
[37]
Chu, D.T.W.; Fernandes, P.B.; Claiborne, A.K.; Gracey, E.H.; Pernet, A.G. Synthesis and structure-activity relationships of new arylfluoronaphthyridine antibacterial agents. J. Med. Chem., 1986, 29(11), 2363-2369.
[http://dx.doi.org/10.1021/jm00161a036] [PMID: 3783594]
[38]
Belf, J.L.; Buxton, M.W.; Bassett, J.F.T. Some reactions of 1,2,3,4-tetrafluorobenzene and derived compounds. Tetrahedran, 1967, 23, 4719.
[http://dx.doi.org/10.1016/S0040-4020(01)92570-0]
[39]
Harper, R.J.; Soloski, E.J.; Tamborski, C. Reactions of organometallics with fluoroaromatic compounds. J. Org. Chem., 1964, 29, 2385-2389.
[http://dx.doi.org/10.1021/jo01031a067]
[40]
Barnick, J.W.F.K.; Baan, J.L.V.D.; Bickelhaupt, F. A convenient direct method for the preparation of ß-keto-acids. Synthesis, 1979, 787-788
[http://dx.doi.org/10.1055/s-1979-28830]
[41]
Domagala, J.M.; Heifetz, C.L.; Hutt, M.P.; Mich, T.F.; Nichols, J.B.; Solomon, M.; Worth, D.F. 1-Substituted 7-[3-[(ethylamino)methyl]-1-pyrrolidinyl]-6,8- difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids. New quantitative structure-activity relationships at N1 for the quinolone antibacterials. J. Med. Chem., 1988, 31(5), 991-1001.
[http://dx.doi.org/10.1021/jm00400a017] [PMID: 2834557]
[42]
Chu, D.T.W.; Fernandes, P.B.; Pernet, A.G. Synthesis and biological activity of benzothiazolo[3,2-a]quinolone antibacterial agents. J. Med. Chem., 1986, 29(8), 1531-1534.
[http://dx.doi.org/10. 1021/jm00158a037]
[43]
Bergmann, M.; Zervas, L. Über ein allgemeines verfahren der peptid‐synthese. Chem. Ber., 1932, 65, 1192-1201.
[http://dx.doi.org/10.1002/cber.19320650722]
[44]
Daignault, R.; Eliel, E. Organic Synthesis; Wiley: New york, 1973.
[45]
Cooper, C.S.; Klock, P.L.; Chu, D.T.W.; Hardy, D.J.; Swanson, R.N.; Plattner, J.J. Preparation and in vitro and in vivo evaluation of quinolones with selective activity against gram-positive organisms. J. Med. Chem., 1992, 35(8), 1392-1398.
[http://dx.doi.org/10.1021/jm00086a007] [PMID: 1573632]
[46]
Gorzynski, E.A. Interactions between microorganisms, antimicrobics, and cells. Antimicrob. News Lett., 1989, 6, 45-48.
[47]
Leysen, D.C.; Haemers, A.; Pattyn, S.R. Mycobacteria and the new quinolones. Antimicrob. Agents Chemother., 1989, 33(1), 1-5.
[http://dx.doi.org/10.1128/AAC.33.1.1] [PMID: 2540705]
[48]
Caekenberghe, D.V. Comparative in-vitro activities of ten fluoroquinolones and fusidic acid against Mycobacterium spp. J. Antimicrob. Chemother., 1990, 26, 381-386.
[http://dx.doi.org/10.1093/jac/26.3.381] [PMID: 2228828]
[49]
Berlin, O.G.W.; Young, L.S.; Brukner, D.A. In-vitro activity of six fluorinated quinolones against Mycobacterium tuberculosis. J. Antimicrob. Chemother., 1987, 19, 605-609.
[http://dx.doi.org/10.1093/jac/19.5.611] [PMID: 3112094]
[50]
Karak, K.; De, P.K. Comparative in vitro activity of fluoroquinolones against Mycobacterium tuberculosis. Indian J. Med. Res., 1995, 101, 147-149.
[PMID: 7751043]
[51]
Davies, S.; Sparham, P.D.; Spencer, R.C. Comparative in-vitro activity of five fluoroquinolones against mycobacteria. J. Med. Chem., 1987, 19(5), 605-609.
[http://dx.doi.org/10.1093/jac/19.5.605]
[52]
Lane, C.F. Sodium cyanoborohydride - a highly selective reducing agent for organic functional groups. Synthesis, 1975, 135-146.
[http://dx.doi.org/10.1055/s-1975-23685]
[53]
Yung, D.K.; Chatten, L.G.; MacLeod, D.P. Potential antiarrhythmic agents. I. Synthesis and pharmacological evaluation of some piperazine and ethylenediamine analogs of procaine amide. J. Pharm. Sci., 1968, 57(12), 2073-2080.
[http://dx.doi.org/10.1002/jps.2600571210] [PMID: 5708346]
[54]
Marsella, J.A. Ruthenium catalyzed reactions of ethylene glycol with primary amines: steric factors and selectivity control. J. Organomet, 1991, 407, 97-105.
[http://dx.doi.org/10.1016/0022-328X(91)83143-R]
[55]
Yamane, T.; Hashizume, T.; Yamashita, K.; Konishi, E.; Hosoe, K.; Hidaka, T.; Watanabe, K.; Kawaharada, H.; Yamamoto, T.; Kuze, F. Synthesis and biological activity of 3′-hydroxy-5′-aminobenzoxazinorifamycin derivatives. Chem. Pharm. Bull. (Tokyo), 1993, 41(1), 148-155.
[http://dx.doi.org/10.1248/cpb.41.148] [PMID: 8448815]
[56]
Renau, T.E.; Sanchez, J.P.; Gage, J.W.; Dever, J.A.; Shapiro, M.A.; Gracheck, S.J.; Domagala, J.M. Structure-activity relationships of the quinolone antibacterials against mycobacteria: effect of structural changes at N-1 and C-7. J. Med. Chem., 1996, 39(3), 729-735.
[http://dx.doi.org/10.1021/jm9507082] [PMID: 8576916]
[57]
Besra, G.S.; Chatterjee, D. Lipids and carbohydrates of Mycobacterium tuberculosis. In: Tuberculosis; American Society for Microbiology: Washington, DC, 1994; pp. 285-306.
[58]
Chu, D.T.W.; Fernandes, P.B. Advances in Drug Research; Testa, B., Ed.; Academic Press: New york, 1991, pp. 39-144.
[59]
Michael, E.; Jung, E.C.; Yang, B.T.; Kiankarimi, V.M.; Emmanouil, S.; Kaunitz, J. Glycosylation of fluoroquinolones through direct and oxygenated polymethylene linkages as a sugar-mediated active transport system for antimicrobials. J. Med. Chem., 1999, 42(19), 3899-3909.
[http://dx.doi.org/10.1021/jm990015b]
[60]
(a)Amadori, M. The product of the condensation of glucose and p-phenetidine. Atti Reale Accad. Nazl Lincei, 1929, 9, 68-73.
(b)Simon, H.; Kraus, A. Mechanistische Untersuchungen über Glykosylamine, Zuckerhydrazone, Amadori-Umlagerungsprodukte und Osazone. Fortschr. Chem. Forsch., 1970, 14, 430-471.
[http://dx.doi.org/10.1007/BFb0050813]
[61]
Michael, E.; Jung, E.C.; Yang, B.T.; Kiankarimi, V.M.; Emmanouil, S.; Kaunitz, J. J. Med. Chem., 1999, 42(19), 3899-3909.
[http://dx.doi.org/10.1021/jm990015b] [PMID: 10508438]
[62]
(a)Gervay, J.; Nguyen, T.N.; Hadd, M.J. Mechanistic studies on the stereoselective formation of glycosyl iodides: first characterization of β-d-glycosyl iodides. Carbohydr. Res., 1997, 300, 119-125.
[http://dx.doi.org/10.1016/S0008-6215(96)00321-7]
(b)Gervay, J.; Hadd, M.J. Anionic additions to glycosyl iodides: highly stereoselective syntheses of β C-, N-, and O-glycosides. J. Org. Chem., 1997, 62, 6961-6967.
[http://dx.doi.org/10.1021/jo970922t]
[63]
Hodge, J.E. The Amadori rearrangement. Adv. Carbohydr. Chem., 1955, 10, 169-205.
[http://dx.doi.org/10.1016/S0096-5332(08)60392-6] [PMID: 13292324]
[64]
Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. Synthesis and antibacterial evaluation of certain quinolone derivatives. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[65]
Fang, K.C.; Chen, Y.L.; Sheu, J.Y.; Wang, T.C.; Tzeng, C.C. Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives. J. Med. Chem., 2000, 43, 3809-3812.
[http://dx.doi.org/10.1021/jm000153x] [PMID: 11020298]
[66]
Sheu, J.Y.; Chen, L.; Fang, K.C.; Wang, T.C.; Peng, C.F.; Tzeng, C.C. Synthesis and antibacterial activity of 1-(substituted-benzyl)-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acids and their 6,8-difluoro analogs. J. Heterocycl. Chem., 1998, 35, 955-964.
[http://dx.doi.org/10.1002/jhet.5570350429]
[67]
Hong, C.Y.; Kim, Y.K.; Chang, J.H.; Kim, S.H.; Choi, H.; Nam, D.H.; Kim, Y.Z.; Kwak, J.H. Novel fluoroquinolone antibacterial agents containing oxime-substituted (aminomethyl)pyrrolidines: synthesis and antibacterial activity of 7-(4-(aminomethyl)-3-(methoxyimino)pyrrolidin-1-yl)-1-cyclopropyl-6- fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid (LB20304). J. Med. Chem., 1997, 40, 3584-3593.
[http://dx.doi.org/10.1021/jm970202e] [PMID: 9357525]
[68]
Ma, Z.; Chu, D.T.W.; Cooper, C.S.; Li, Q.; Fung, A.K.L.; Wang, S.; Shen, L.L.; Flamm, R.K.; Nilius, A.M.; Alder, J.D.; Meulbroek, J.A.; Or, Y.S. Synthesis and antimicrobial activity of 4H-4-oxoquinolizine derivatives: consequences of structural modification at the C-8 position. J. Med. Chem., 1999, 42, 4202-4213.
[http://dx.doi.org/10.1021/jm990191k] [PMID: 10514290]
[69]
Rádl, S.; Zikán, V. Synthesis of some 1-aryl-1, 4-dihydro-4-oxoquinoline-3-carboxylic acids and their antibacterial activity. Collect. Czech. Chem. Commun., 1989, 54(8), 2181-2189.
[http://dx.doi.org/10.1135/cccc19892181]
[70]
Juergens, J.; Schedletzky, H.; Heising, P.; Seydel, J.K.; Widemann, B.; Holzgrabe, U. Syntheses and biological activities of new N1-aryl substituted quinolone antibacterials. Arch. Pharm. (Weinheim), 1996, 329, 179-190.
[http://dx.doi.org/10.1002/ardp.19963290403] [PMID: 8669982]
[71]
Yoshida, T.; Yamamoto, Y.; Orita, H.; Kakiuchi, M.; Takahashi, Y.; Itakura, M.; Kado, N.; Mitani, K.; Yasuda, S.; Kato, H.; Itoh, Y. Studies on quinolone antibacterials. IV. Structure-activity relationships of antibacterial activity and side effects for 5- or 8-substituted and 5,8-disubstituted-7-(3-amino-1-pyrrolidinyl)-1-cyclopropyl-1, 4-dihydro-4-oxoquinoline-3-carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1996, 44(5), 1074-1085.
[http://dx.doi.org/10.1248/cpb.44.1074] [PMID: 8689718]
[72]
Inagaki, H.; Miyauchi, S.; Miyauchi, R.N.; Kawato, H.C.; Ohki, H.; Matsuhashi, N.; Kawakami, K.; Takahashi, H.; Takemura, M. Synthesis and structure-activity relationships of 5-amino-6-fluoro-1-[(1R,2S)-2-fluorocyclopropan-1-yl]-8-methylquinolonecarboxylic acid antibacterials having fluorinated 7-[(3R)-3-(1-aminocyclopropan-1-yl)pyrrolidin-1-yl] substituents. J. Med. Chem., 2003, 46(6), 1005-1015.
[http://dx.doi.org/10.1021/jm020328y] [PMID: 12620077]
[73]
Matsumoto, T.; Shirahama, H.; Ichihara, A.; Shin, H.; Kagawa, S.; Hisamitsu, T.; Kamada, T.; Saken, F. Synthesis and conformation of cyclopropane intermediates in the total synthesis of Illudin M and S. Bull. Chem. Soc. Jpn., 1972, 45, 1136-1139.
[74]
Domagala, J.M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother., 1994, 33(4), 685-706.
[http://dx.doi.org/10.1093/jac/33.4.685] [PMID: 8056688]
[75]
Atarashi, S.; Imamura, M.; Kimura, Y.; Yoshida, A.; Hayakawa, I. Fluorocyclopropyl quinolones. 1. Synthesis and structure-activity relationships of 1-(2-fluorocyclopropyl)-3-pyridonecarboxylic acid antibacterial agents. J. Med. Chem., 1993, 36(22), 3444-3448.
[http://dx.doi.org/10.1021/jm00074a027] [PMID: 8230135]
[76]
Kimura, Y.; Atarashi, S.; Kawakami, K.; Sato, K.; Hayakawa, I. (Fluorocyclopropyl)quinolones. 2. Synthesis and Stereochemical structure-activity relationships of chiral 7-(7-amino-5-azaspiro[2.4]heptan-5-yl)-1-(2-fluorocyclopropyl)quinolone antibacterial agents. J. Med. Chem., 1994, 37(20), 3344-3352.
[http://dx.doi.org/10.1021/jm00046a019] [PMID: 7932562]
[77]
Hoshino, K.; Sato, K.; Kitamura, A.; Hayakawa, I.; Sato, M.; Osada, Y. In: Inhibitory effects of DU-6859, a new fluorinated quinolone, on type-2 topoisomerases,; Abstracts of 31st International Conference on Antimicrobial Agents and Chemotherapy, Chicago, Illionois, Abstract 1506..
[78]
Yoshida, T.; Yamamoto, Y.; Orita, H.; Kakiuchi, M.; Takahashi, Y.; Itakura, M.; Kado, N.; Yasuda, S.; Kato, H.; Itoh, Y. Studies on quinolone antibacterials. V. Synthesis and antibacterial activity of chiral 5-amino-7-(4-substituted-3-amino-1-pyrrolidinyl)-6- fluoro-1,4-dihydro-8-methyl-4-oxoquinoline-3-carboxylic acids and derivatives. Chem. Pharm. Bull. (Tokyo), 1996, 44(7), 1376-1386.
[http://dx.doi.org/10.1248/cpb.44.1376] [PMID: 8706143]
[79]
Kawakami, K.; Takahashi, H.; Ohki, H.; Kimura, K.; Miyauchi, S.; Miyauchi, R.; Takemura, M. Studies on 8-methoxyquinolones: synthesis and antibacterial activity of 7-(3-amino-4-substituted)pyrrolidinyl derivatives. Chem. Pharm. Bull. (Tokyo), 2000, 48(11), 1667-1672.
[http://dx.doi.org/10.1248/cpb.48.1667] [PMID: 11086894]
[80]
Wise, R.; Andrews, J.M.; Edwards, L.J. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob. Agents Chemother., 1983, 23(4), 559-564.
[http://dx.doi.org/10.1128/AAC.23.4.559] [PMID: 6222695]
[81]
Fukuyama, T.; Cheung, M.; Jow, C.K.; Hidai, Y.; Kan, T. 2,4-Dinitrobenzenesulfonamides: a simple and practical method for the preparation of a variety of secondary amines and diamines. Tetrahedron Lett., 1997, 38, 5831-5834.
[http://dx.doi.org/10.1016/S0040-4039(97)01334-8]
[82]
Rutjes, F.P.J.T.; Schoemaker, H.E. Ruthenium-catalyzed ring closing olefin metathesis of non-natural α-amino acids. Tetrahedron Lett., 1997, 38, 677-680.
[http://dx.doi.org/10.1016/S0040-4039(96)02390-8]
[83]
Phillip, A.J.; Abell, A.D. Ring-closing metathesis of nitrogen-containing compounds: applications to heterocycles, alkaloids, and peptidomimetics. Aldrichim Acta, 1999, 32, 75-90.
[http://dx.doi.org/10.1002/chin.200027259]
[84]
Hu, X.E.; Kim, N.K.; Gray, J.L.; Almstead, J.I.; Seibel, W.L.; Ledoussal, B. Discovery of (3S)-amino-(4R)-ethylpiperidinyl quinolones as potent antibacterial agents with a broad spectrum of activity and activity against resistant pathogens. J. Med. Chem., 2003, 46(17), 3655-3661.
[http://dx.doi.org/10.1021/jm030272n] [PMID: 12904069]
[85]
Domagala, J.M.; Hagen, S.E.; Heifetz, C.L.; Hutt, M.P.; Mich, T.F.; Sanchez, J.P.; Trehan, A.K. 7-substituted 5-amino-1-cyclopropyl-6,8-difluoro-1,4-dihydro-4-oxo-3- quinolinecarboxylic acids: synthesis and biological activity of a new class of quinolone antibacterials. J. Med. Chem., 1988, 31(3), 503-506.
[http://dx.doi.org/10.1021/jm00398a003] [PMID: 3346869]
[86]
Cecchetti, V.; Clementi, S.; Cruciani, G.; Fravolini, A.; Pagella, P.G.; Savino, A.; Tabarrini, O. 6-Aminoquinolones: a new class of quinolone antibacterials? J. Med. Chem., 1995, 38(6), 973-982.
[http://dx.doi.org/10.1021/jm00006a017] [PMID: 7699714]
[87]
Cecchetti, V.; Fravolini, A.; Lorenzini, M.C.; Tabarrini, O.; Terni, P.; Xin, T. Studies on 6-aminoquinolones: synthesis and antibacterial evaluation of 6-amino-8-methylquinolones. J. Med. Chem., 1996, 39(2), 436-445.
[http://dx.doi.org/10.1021/jm950558v] [PMID: 8558512]
[88]
Maple, P.A.C.; Miller, J.M.T.; Brumfitt, W. Differing activities of quinolones against ciprofloxacin-susceptible and ciprofloxacin-resistant, methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1991, 35, 345-350.
[http://dx.doi.org/10.1128/AAC.35.2.345] [PMID: 1827242]
[89]
Piddok, L.J.V. New quinolones and gram-positive bacteria. Antimicrob. Agents Chemother., 1994, 38, 164-169.
[http://dx.doi.org/10.1128/AAC.38.2.163]
[90]
Frostall, G.J.; Knapp, C.C. Activity of new quinolones against ciprofloxacin-resistant staphylococci. Antimicrob. Agents Chemother., 1991, 35, 1679-1681.
[http://dx.doi.org/10.1128/AAC.35.8.1679] [PMID: 1656873]
[91]
Bonelli, D.; Cecchetti, V.; Clementi, S.; Cruciani, G.; Fravolini, A.; Savino, A.F. The antibacterial activity of quinolones against Escherichia coli: a chemometric study. Mol. Inform., 1991, 10, 333-343.
[http://dx.doi.org/10.1002/qsar.19910100405]
[92]
Parika, J.; Doering, W. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J. Am. Chem. Soc., 1967, 87, 5505-5507.
[http://dx.doi.org/10.1021/ja00997a067]
[93]
Cecchetti, V.; Fravolini, A.; Palumbo, M.; Sissi, C.; Tabarrini, O.; Terni, P.; Xin, T. Potent 6-desfluoro-8-methylquinolones as new lead compounds in antibacterial chemotherapy. J. Med. Chem., 1996, 39(25), 4952-4957.
[http://dx.doi.org/10.1021/jm960414w] [PMID: 8960555]
[94]
Eliopoulus, G.M. In vitro activity of fluoroquinolones against gram-positive bacteria. Drugs, 1995, 49(Suppl. 2), 48-57.
[http://dx.doi.org/10.2165/00003495-199500492-00009] [PMID: 8549407]
[95]
Sesnie, J.C.; Hefietz, C.L.; Jonnides, E.T.; Malta, T.E.; Shapiro, M.A. In: A Mouse Photolerance Model; Proceedings of the 30th Interscience Conference on Antimicrobial Agents and Chemotherapy. , 1990.
[96]
Bijma, J.; Spero, H.J.; Lea, D.W. Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system. In: Use of proxies in paleoceanography; Springer: Berlin, 1999; pp. 489-512.
[97]
Baba, M.; Okamoto, M.; Makino, M.; Kimura, Y.; Ikeuchi, T.; Sakaguchi, T.; Okamoto, T. Potent and selective inhibition of human immunodeficiency virus type 1 transcription by piperazinyloxoquinoline derivatives. Antimicrob. Agents Chemother., 1997, 41(6), 1250-1255.
[http://dx.doi.org/10.1128/AAC.41.6.1250] [PMID: 9174179]
[98]
Witvurouv, M.; Daelemans, D.; Pannecouque, C.; Neyts, J.; Anderi, G.; Snoeck, R.; Vandamme, A.; Balzarini, J.; Desmyter, J.; Baba, M.; De Clercq, E. Antivir. Chem. Chemother., 1988, 5, 403-411.
[99]
Baba, M.; Okamoto, M.; Kawamura, M.; Makino, M.; Higashida, T.; Takashi, T.; Kimura, Y.; Ikeuchi, T.; Tetsuka, T.; Okamoto, T. Inhibition of human immunodeficiency virus type 1 replication and cytokine production by fluoroquinoline derivatives. Mol. Pharmacol., 1998, 53(6), 1097-1103.
[PMID: 9614214]
[100]
Cecchetti, V.; Parolin, C.; Moro, S.; Pecere, T.; Filipponi, E.; Calistri, A.; Tabarrini, O.; Gatto, B.; Palumbo, M.; Fravolini, A.; Palu’, G. 6-Aminoquinolones as new potential anti-HIV agents. J. Med. Chem., 2000, 43(20), 3799-3802.
[http://dx.doi.org/10.1021/jm9903390] [PMID: 11020296]
[101]
Tabarrini, O.; Stevens, M.; Cecchetti, V.; Sabatini, S.; Uomo, M.D.; Manfroni, G.; Palumbo, M.; Pannecouque, C.; Clercq, E.D.; Fravolini, A. Structure modifications of 6-aminoquinolones with potent anti-HIV activity. J. Med. Chem., 2004, 47(22), 5567-5578.
[http://dx.doi.org/10.1021/jm049721p]
[102]
Edelson, J.; Davison, C.; Benziger, D.P. Quinolone and “azaquinolone” antimicrobial agents. Drug Metab. Rev., 1977, 6, 105-148.
[http://dx.doi.org/10.3109/03602537708993766]
[103]
Alexander, J.; Fromtling, R.A.; Bland, J.A.; Pelak, B.A.; Gilfillan, E.C. (Acyloxy)alkyl carbamate prodrugs of norfloxacin. J. Med. Chem., 1991, 34(1), 78-81.
[http://dx.doi.org/10.1021/jm00105a013] [PMID: 1992156]
[104]
Alex, R.R.; Kulkarni, V.M. Design and synthesis of penicilloyl oxymethyl quinolone carbamates as a new class of dual-acting antibacterials. Eur. J. Med. Chem., 1995, 30, 815-818.
[http://dx.doi.org/10.1016/0223-5234(96)88301-2]
[105]
Shen, L.L.; Mitscher, L.A.; Sharma, P.N.; O’Donnell, T.J.; Chu, D.T.W.; Cooper, C.S.; Rosen, T.; Pernet, A.G. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug--DNA binding model. Biochemistry, 1989, 28, 3886-3894.
[http://dx.doi.org/10.1021/bi00435a039]
[106]
Hanessian, S.; Saladino, R.; Nunez, J.C. On the binding site of quinolone antibacterials. An attempt to probe the shen model. Bioorg. Med. Chem. Lett., 1996, 6, 2333-2338.
[http://dx.doi.org/10.1016/0960-894X(96)00430-1]
[107]
Ambrose, R.; Ribera, S.G.; Munoz, A.S.; Barenys, J.M.C.; Hernandez, J.A.O. U.S. patent 20003196, 1989.
[108]
Singh, R.; Afshar, R.F.; Thomas, G.; Singh, M.P.; Higashitani, F.; Hyodo, A.; Unemi, N.; Micetich, R.G. Synthesis and antibacterial activity of 7-hydrazinoquinolones. Eur. J. Med. Chem., 1998, 33, 697-703.
[http://dx.doi.org/10.1016/S0223-5234(98)80028-7]
[109]
Fleisch, H.A. Bisphosphonates: preclinical aspects and use in osteoporosis. Ann. Med., 1997, 29(1), 55-62.
[http://dx.doi.org/10.3109/07853899708998743] [PMID: 9073324]
[110]
Sedghizadeh, P.P.; Sun, S.; Junka, A.F.; Richard, E.; Sadrerafi, K.; Mahabady, S.; Bakhshalian, N.; Tjokro, N.; Bartoszewicz, M.; Oleksy, M.; Szymczyk, P.; Lundy, M.W.; Neighbors, J.D.; Russell, R.G.G.; McKenna, C.E.; Ebetino, F.H. Design, synthesis, and antimicrobial evaluation of a novel bone targeting bisphosphonate-ciprofloxacin conjugate for the treatment of osteomyelitis biofilms. J. Med. Chem., 2017, 60, 2326-2343.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01615]
[111]
Lew, D.P.; Waldvogel, F.A. Quinolones and osteomyelitis: state-of-the-art. Drugs, 1995, 49(Suppl. 2), 100-111.
[http://dx.doi.org/10.2165/00003495-199500492-00016] [PMID: 8549277]
[112]
Degenhardt, C.R.; Burdsall, D.C. Synthesis of ethenylidene bis(phosphonic acid) and its tetraalkyl esters. J. Org. Chem., 1986, 51, 3488-3490.
[http://dx.doi.org/10.1021/jo00368a017]
[113]
Herczeg, P.; Buxon, T.B.; Pherson, J.M.C.; Kulyassa, A.K.; Brewer, P.D.; Sztaricskai, F.; Stroebel, G.G.; Plowman, K.M.; Farcasiu, D.; Hartmann, J.F. Osteoadsorptive bisphosphonate derivatives of fluoroquinolone antibacterials. J. Med. Chem., 2002, 45, 2338-2341.
[http://dx.doi.org/10.1021/jm0105326] [PMID: 12014972]
[114]
Ledoussal, B.; Bouzard, D.; Coroneos, Potent non-6-fluoro-substituted quinolone antibacterials: synthesis and biological activity. Eur. J. Med. Chem., 1992, 35, 198-200.
[http://dx.doi.org/10.1021/jm00079a028]
[115]
Gray, J.L.; Almstead, J.I.; Gallagher, C.P.; Hu, X.E.; Kim, N.K.; Taylor, C.J.; Twinem, T.L.; Wallace, C.D.; Ledoussal, B. Synthesis and biological testing of non-fluorinated analogues of levofloxacin. Bioorg. Med. Chem. Lett., 2003, 13(14), 2373-2375.
[http://dx.doi.org/10.1016/S0960-894X(03)00399-8] [PMID: 12824037]
[116]
German, N.; Wei, P.; Kaatz, G.W.; Kerns, R.J. Synthesis and evaluation of fluoroquinolones derivatives as substrate-based inhibitors of bacterial efflux pumps. Eur. J. Med. Chem., 2008, 43, 2453-2463.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.042]
[117]
Verling, P.; Anquetin, G.; Griener, J.; Mahmoudi, N.; Gozalbes, R. Design, synthesis and activity against Toxoplasma gondii, Plasmodium spp., and Mycobacterium tuberculosis of new 6-fluoroquinolones. Eur. J. Med. Chem., 2006, 41, 1478-1493.
[118]
Ginsburg, A.S.; Sun, R.; Calamita, H.; Scott, C.P.; Bishai, W.R.; Grosset, J.H. Emergence of fluoroquinolone resistance in Mycobacterium tuberculosis during continuously dosed moxifloxacin monotherapy in a mouse model. Antimicrob. Agents Chemother., 2005, 49(9), 3977-3979.
[http://dx.doi.org/10.1128/AAC.49.9.3977-3979.2005] [PMID: 16127087]
[119]
Jube, S.; Kumar, R.R.; Reddy, Y.B.; Siddhartha, G.; Sandeep, M.; Reddy, S.K.; Dushyanth, H.S.; Elango, K. Microwave assisted synthesis of some novel benzimidazole substituted fluoroquinolones and their antimicrobial evaluation. J. Pharm. Sci. Res., 2010, 2, 69-76.
[120]
Shashikant, R.P.; Nachiket, S.D.; Hariprasad, C.K.; Jayshari, S.P.; Daithankar, A.V.; Gaware, V.M.; Hole, M.B. Synthesis and evaluation of some new 6-fluro-quinolin-4 (1H)-one derivatives for their anti-microbial activities. J. Pharm. Sci. Res., 2009, 1(4), 55-60.
[121]
Srivastava, N.; Kumar, A. Synthesis of substituted-4-oxo-1, 4-dihydro-3-[1-oxo-2-hydrazino-3-p-toluenesulfon]quinoline derivatives and their biological activity against bacterial infections. Orient. J. Chem., 2013, 29(2), 507-511.
[http://dx.doi.org/10.13005/ojc/290216]
[122]
Srivastava, N.; Kumar, A. Synthesis and study of 1-ethyl-3-carbohydrazide and 3-[1-oxo-2-hydrazino-3-p-toluenesulfon]quinolone derivatives against bacterial infections. Eur. J. Med. Chem., 2013, 67, 464-468.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.056] [PMID: 23933534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy