Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Favorable Effects of Astaxanthin on Brain Damage due to Ischemia- Reperfusion Injury

Author(s): Esra Cakir*, Ufuk Cakir, Cuneyt Tayman, Tugba Taskin Turkmenoglu, Ataman Gonel and Isil O. Turan

Volume 23, Issue 3, 2020

Page: [214 - 224] Pages: 11

DOI: 10.2174/1386207323666200219121600

Price: $65

conference banner
Abstract

Background: Activated inflammation and oxidant stress during cerebral ischemia reperfusion injury (IRI) lead to brain damage. Astaxanthin (ASX) is a type of carotenoid with a strong antioxidant effect.

Objective: The aim of this study was to investigate the role of ASX on brain IRI.

Methods: A total of 42 adult male Sprague-Dawley rats were divided into 3 groups as control (n=14) group, IRI (n=14) group and IRI + ASX (n=14) group. Cerebral ischemia was instituted by occluding middle cerebral artery for 120 minutes and subsequently, reperfusion was performed for 48 hours. Oxidant parameter levels and protein degradation products were evaluated. Hippocampal and cortex cell apoptosis, neuronal cell count, neurological deficit score were evaluated.

Results: In the IRI group, oxidant parameter levels and protein degradation products in the tissue were increased compared to control group. However, these values were significantly decreased in the IRI + ASX group (p<0.05). There was a significant decrease in hippocampal and cortex cell apoptosis and a significant increase in the number of neuronal cells in the IRI + ASX group compared to the IRI group alone (p<0.05). The neurological deficit score which was significantly lower in the IRI group compared to the control group was found to be significantly improved in the IRI + ASX group (p<0.05).

Conclusion: Astaxanthin protects the brain from oxidative damage and reduces neuronal deficits due to IRI injury.

Keywords: Astaxanthin, brain ischemia, reperfusion injury, oxidative stress, neurologic deficits, antioxidant.

[1]
Collard, C.D.; Gelman, S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology, 2001, 94(6), 1133-1138.
[http://dx.doi.org/10.1097/00000542-200106000-00030] [PMID: 11465607]
[2]
Spoelstra-de Man, A.M.E.; Elbers, P.W.G.; Oudemans-van Straaten, H.M. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit. Care, 2018, 22(1), 70.
[http://dx.doi.org/10.1186/s13054-018-1996-y] [PMID: 29558975]
[3]
Dorweiler, B.; Pruefer, D.; Andrasi, T.B.; Maksan, S.M.; Schmiedt, W.; Neufang, A.; Vahl, C.F. Ischemia-reperfusion injury: pathophysiology and clinical implications. Eur. J. Trauma Emerg. Surg., 2007, 33(6), 600-612.
[http://dx.doi.org/10.1007/s00068-007-7152-z] [PMID: 26815087]
[4]
Zuluaga, M.; Gueguen, V.; Letourneur, D.; Pavon-Djavid, G. Astaxanthin-antioxidant impact on excessive Reactive Oxygen Species generation induced by ischemia and reperfusion injury. Chem. Biol. Interact., 2018, 279, 145-158.
[http://dx.doi.org/10.1016/j.cbi.2017.11.012] [PMID: 29179950]
[5]
Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res., 2018, 136, 1-20.
[http://dx.doi.org/10.1016/j.phrs.2018.08.012] [PMID: 30121358]
[6]
Lucas, S.M.; Rothwell, N.J.; Gibson, R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol., 2006, 147(Suppl. 1), S232-S240.
[http://dx.doi.org/10.1038/sj.bjp.0706400] [PMID: 16402109]
[7]
Li, S.; Takahara, T.; Fujino, M.; Fukuhara, Y.; Sugiyama, T.; Li, X.K.; Takahara, S. Astaxanthin prevents ischemia-reperfusion injury of the steatotic liver in mice. PLoS One, 2017, 12(11) e0187810
[http://dx.doi.org/10.1371/journal.pone.0187810] [PMID: 29121675]
[8]
Wen, J.Y.; Chen, Z.W. Protective effect of pharmacological preconditioning of total flavones of abelmoschl manihot on cerebral ischemic reperfusion injury in rats. Am. J. Chin. Med., 2007, 35(4), 653-661.
[http://dx.doi.org/10.1142/S0192415X07005144] [PMID: 17708631]
[9]
Longa, E.Z.; Weinstein, P.R.; Carlson, S.; Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20(1), 84-91.
[http://dx.doi.org/10.1161/01.STR.20.1.84] [PMID: 2643202]
[10]
Lu, W.; Xv, L.; Wen, J. Protective effect of extract of the Camellia japonica L. on cerebral ischemia-reperfusion injury in rats. Arq. Neuropsiquiatr., 2019, 77(1), 39-46.
[http://dx.doi.org/10.1590/0004-282x20180146] [PMID: 30758441]
[11]
Duong, T.T.; Chami, B.; McMahon, A.C.; Fong, G.M.; Dennis, J.M.; Freedman, S.B.; Witting, P.K. Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury. J. Neurochem., 2014, 130(6), 733-747.
[http://dx.doi.org/10.1111/jnc.12747] [PMID: 24766199]
[12]
Wang, P.; Jia, L.; Chen, B.; Zhang, L.; Liu, J.; Long, J.; Li, Y. Hydrogen inhalation is superior to mild hypothermia in improving cardiac function and neurological outcome in an asphyxial cardiac arrest model of rats. Shock, 2016, 46(3), 312-318.
[http://dx.doi.org/10.1097/SHK.0000000000000585] [PMID: 26849632]
[13]
Geocadin, R.G.; Muthuswamy, J.; Sherman, D.L.; Thakor, N.V.; Hanley, D.F. Early electrophysiological and histologic changes after global cerebral ischemia in rats. Mov. Disord., 2000, 15(Suppl. 1), 14-21.
[http://dx.doi.org/10.1002/mds.870150704] [PMID: 10755267]
[14]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[15]
Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005, 38(12), 1103-1111.
[http://dx.doi.org/10.1016/j.clinbiochem.2005.08.008] [PMID: 16214125]
[16]
Koyuncu, I.; Kocyigit, A.; Gonel, A.; Arslan, E.; Durgun, M. The protective effect of naringenin-oxime on cisplatin-induced toxicity in rats. Biochem. Res. Int., 2017, 2017 9478958
[http://dx.doi.org/10.1155/2017/9478958] [PMID: 28932603]
[17]
Witko-Sarsat, V.; Gausson, V.; Nguyen, A.T.; Touam, M.; Drüeke, T.; Santangelo, F.; Descamps-Latscha, B. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int., 2003, 64(1), 82-91.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00044.x] [PMID: 12787398]
[18]
Erel, O.; Neselioglu, S. A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem., 2014, 47(18), 326-332.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.09.026] [PMID: 25304913]
[19]
Krawisz, J.E.; Sharon, P.; Stenson, W.F. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology, 1984, 87(6), 1344-1350.
[http://dx.doi.org/10.1016/0016-5085(84)90202-6] [PMID: 6092199]
[20]
Ben Mosbah, I.; Mouchel, Y.; Pajaud, J.; Ribault, C.; Lucas, C.; Laurent, A.; Boudjema, K.; Morel, F.; Corlu, A.; Compagnon, P. Pretreatment with mangafodipir improves liver graft tolerance to ischemia/reperfusion injury in rat. PLoS One, 2012, 7(11) e50235
[http://dx.doi.org/10.1371/journal.pone.0050235] [PMID: 23226251]
[21]
Wu, H.H.; Huang, C.C.; Chang, C.P.; Lin, M.T.; Niu, K.C.; Tian, Y.F. Heat Shock protein 70 (HSP70) reduces hepatic inflammatory and oxidative damage in a rat model of liver ischemia/reperfusion injury with hyperbaric oxygen preconditioning. Med. Sci. Monit., 2018, 24, 8096-8104.
[http://dx.doi.org/10.12659/MSM.911641] [PMID: 30417859]
[22]
Cakir, U.; Tayman, C.; Serkant, U.; Yakut, H.I.; Cakir, E.; Ates, U.; Koyuncu, I.; Karaogul, E. Ginger (Zingiber officinale Roscoe) for the treatment and prevention of necrotizing enterocolitis. J. Ethnopharmacol., 2018, 225(225), 297-308.
[http://dx.doi.org/10.1016/j.jep.2018.07.009] [PMID: 30005955]
[23]
Galasso, C.; Orefice, I.; Pellone, P.; Cirino, P.; Miele, R.; Ianora, A.; Brunet, C.; Sansone, C. On the neuroprotective role of astaxanthin: new perspectives? Mar. Drugs, 2018, 16(8) E247
[http://dx.doi.org/10.3390/md16080247] [PMID: 30042358]
[24]
El Khashab, I.H.; Abdelsalam, R.M.; Elbrairy, A.I.; Attia, A.S. Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis. Biomed. Pharmacother., 2019, 112 108619
[http://dx.doi.org/10.1016/j.biopha.2019.108619] [PMID: 30797156]
[25]
Gu, N.; Ge, K.; Hao, C.; Ji, Y.; Li, H.; Guo, Y. Neuregulin1β effects on brain tissue via ERK5-dependent MAPK pathway in a rat model of cerebral ischemia-reperfusion injury. J. Mol. Neurosci., 2017, 61(4), 607-616.
[http://dx.doi.org/10.1007/s12031-017-0902-4] [PMID: 28265860]
[26]
Cetin, C.; Erdogan, A.M.; Dincel, G.C.; Bakar, B.; Kisa, U. Effects of sulphasalazine in cerebral ischemia reperfusion injury in rat. Arch. Med. Res., 2017, 48(3), 247-256.
[http://dx.doi.org/10.1016/j.arcmed.2017.06.004] [PMID: 28923326]
[27]
Nai, Y.; Liu, H.; Bi, X.; Gao, H.; Ren, C. Protective effect of astaxanthin on acute cerebral infarction in rats. Hum. Exp. Toxicol., 2018, 37(9), 929-936.
[http://dx.doi.org/10.1177/0960327117745693] [PMID: 29216762]
[28]
Al-Amin, M.M.; Akhter, S.; Hasan, A.T.; Alam, T.; Nageeb Hasan, S.M.; Saifullah, A.R.; Shohel, M. The antioxidant effect of astaxanthin is higher in young mice than aged: a region specific study on brain. Metab. Brain Dis., 2015, 30(5), 1237-1246.
[http://dx.doi.org/10.1007/s11011-015-9699-4] [PMID: 26116165]
[29]
Xue, Y.; Qu, Z.; Fu, J.; Zhen, J.; Wang, W.; Cai, Y.; Wang, W. The protective effect of astaxanthin on learning and memory deficits and oxidative stress in a mouse model of repeated cerebral ischemia/reperfusion. Brain Res. Bull., 2017, 131, 221-228.
[http://dx.doi.org/10.1016/j.brainresbull.2017.04.019] [PMID: 28479214]
[30]
Li, Z.; Dong, X.; Liu, H.; Chen, X.; Shi, H.; Fan, Y.; Hou, D.; Zhang, X. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol. Vis., 2013, 19, 1656-1666.
[PMID: 23901249]
[31]
Wu, Q.; Zhang, X.S.; Wang, H.D.; Zhang, X.; Yu, Q.; Li, W.; Zhou, M.L.; Wang, X.L. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar. Drugs, 2014, 12(12), 6125-6141.
[http://dx.doi.org/10.3390/md12126125] [PMID: 25528957]
[32]
Yamagishi, R.; Aihara, M. Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis. Mol. Vis., 2014, 20(20), 1796-1805.
[PMID: 25593507]
[33]
Marin, D.P.; Bolin, A.P.; Macedo, Rde.C.; Sampaio, S.C.; Otton, R. ROS production in neutrophils from alloxan-induced diabetic rats treated in vivo with astaxanthin. Int. Immunopharmacol., 2011, 11(1), 103-109.
[http://dx.doi.org/10.1016/j.intimp.2010.10.013] [PMID: 21055504]
[34]
Park, J.S.; Chyun, J.H.; Kim, Y.K.; Line, L.L.; Chew, B.P. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr. Metab. (Lond.), 2010, 7, 18.
[http://dx.doi.org/10.1186/1743-7075-7-18] [PMID: 20205737]
[35]
Sun, X.; Crawford, R.; Liu, C.; Luo, T.; Hu, B. Development-dependent regulation of molecular chaperones after hypoxia-ischemia. Neurobiol. Dis., 2015, 82, 123-131.
[http://dx.doi.org/10.1016/j.nbd.2015.06.001] [PMID: 26070787]
[36]
Lee, D.H.; Lee, Y.J.; Kwon, K.H. Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J. Clin. Biochem. Nutr., 2010, 47(2), 121-129.
[http://dx.doi.org/10.3164/jcbn.10-29] [PMID: 20838567]
[37]
Campoio, T.R.; Oliveira, F.A.; Otton, R. Oxidative stress in human lymphocytes treated with fatty acid mixture: role of carotenoid astaxanthin. Toxicol. In Vitro, 2011, 25(7), 1448-1456.
[http://dx.doi.org/10.1016/j.tiv.2011.04.018] [PMID: 21549829]
[38]
Hosomi, N.; Ban, C.R.; Naya, T.; Takahashi, T.; Guo, P.; Song, X.Y.; Kohno, M. Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2005, 25(8), 959-967.
[http://dx.doi.org/10.1038/sj.jcbfm.9600086] [PMID: 15729288]
[39]
Campbell, I.L.; Abraham, C.R.; Masliah, E.; Kemper, P.; Inglis, J.D.; Oldstone, M.B.; Mucke, L. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. Sci. USA, 1993, 90(21), 10061-10065.
[http://dx.doi.org/10.1073/pnas.90.21.10061] [PMID: 7694279]
[40]
Wu, H.; Tang, C.; Tai, L.W.; Yao, W.; Guo, P.; Hong, J.; Yang, X.; Li, X.; Jin, Z.; Ke, J.; Wang, Y. Flurbiprofen axetil attenuates cerebral ischemia/reperfusion injury by reducing inflammation in a rat model of transient global cerebral ischemia/reperfusion. Biosci. Rep., 2018, 38(4) BSR20171562
[http://dx.doi.org/10.1042/BSR20171562] [PMID: 29540536]
[41]
Wang, C.; Liu, J.L.; Sang, H.F.; Lu, Y.; Dong, H.L.; Xiong, L.Z. Therapeutic time window of flurbiprofen axetil’s neuroprotective effect in a rat model of transient focal cerebral ischemia. Chin. Med. J. (Engl.), 2008, 121(24), 2572-2577.
[http://dx.doi.org/10.1097/00029330-200812020-00019] [PMID: 19187598]
[42]
Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev., 1999, 79(4), 1431-1568.
[http://dx.doi.org/10.1152/physrev.1999.79.4.1431] [PMID: 10508238]
[43]
Colbourne, F.; Sutherland, G.R.; Auer, R.N. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J. Neurosci., 1999, 19(11), 4200-4210.
[http://dx.doi.org/10.1523/JNEUROSCI.19-11-04200.1999] [PMID: 10341224]
[44]
Ji, X.; Peng, D.; Zhang, Y.; Zhang, J.; Wang, Y.; Gao, Y.; Lu, N.; Tang, P. Astaxanthin improves cognitive performance in mice following mild traumatic brain injury. Brain Res., 2017, 1659, 88-95.
[http://dx.doi.org/10.1016/j.brainres.2016.12.031] [PMID: 28048972]
[45]
Manabe, Y.; Komatsu, T.; Seki, S.; Sugawara, T. Dietary astaxanthin can accumulate in the brain of rats. Biosci. Biotechnol. Biochem., 2018, 82(8), 1433-1436.
[http://dx.doi.org/10.1080/09168451.2018.1459467] [PMID: 29625535]
[46]
Xu, L.; Zhu, J.; Yin, W.; Ding, X. Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6083-6094.
[PMID: 26261486]
[47]
Zhang, Y.; Zhang, Y.; Xiao, Y.; Zhong, C.; Xiao, F. Expression of Clusterin suppresses Cr(VI)-induced premature senescence through activation of PI3K/AKT pathway. Ecotoxicol. Environ. Saf., 2019, 183 109465
[http://dx.doi.org/10.1016/j.ecoenv.2019.109465] [PMID: 31376806]
[48]
Wang, C.M.; Cai, X.L.; Wen, Q.P. Astaxanthin reduces isoflurane-induced neuroapoptosis via the PI3K/Akt pathway. Mol. Med. Rep., 2016, 13(5), 4073-4078.
[http://dx.doi.org/10.3892/mmr.2016.5035] [PMID: 27035665]
[49]
Chen, X.; Guo, L.; Ma, Q.; Chen, W.; Fan, W.; Zhang, J. Design, synthesis, and biological evaluation of novel N-acylhydrazone bond linked heterobivalent β-carbolines as potential anticancer agents. Molecules, 2019, 24(16) E2950
[http://dx.doi.org/10.3390/molecules24162950] [PMID: 31416271]
[50]
Zhang, L.; Wang, H. Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Mar. Drugs, 2015, 13(7), 4310-4330.
[http://dx.doi.org/10.3390/md13074310] [PMID: 26184238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy