Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Nanocrystalline ZnO: A Competent and Reusable Catalyst for the Preparation of Pharmacology Relevant Heterocycles in the Aqueous Medium

Author(s): Moumita Saha and Asish R. Das*

Volume 7, Issue 1, 2020

Page: [53 - 104] Pages: 52

DOI: 10.2174/2213346107666200218122718

Abstract

Nanoparticle catalyzed synthesis is a green and convenient method to achieve most of the chemical transformations in water or other green solvents. Nanoparticle ensures an easy isolation process of catalyst as well as products from the reaction mixture avoiding the hectic work up procedure. Zinc oxide is a biocompatible, environmentally benign and economically viable nanocatalyst with effectivity comparable to the other metal nanocatalyst employed in several reaction strategies. This review mainly focuses on the recent applications of zinc oxide in the synthesis of biologically important heterocyclic molecules under sustainable reaction conditions.

Application of zinc oxide in organic synthesis: Considering the achievable advantages of this nanocatalyst, presently several research groups are paying attention in anchoring zincoxide or its modified structure in several types of organic conversions e.g. multicomponent reactions, ligand-free coupling reactions, cycloaddition reaction, etc. The advantages and limitations of this nanocatalyst are also demonstrated. The present study aims to highlight the recent multifaceted applications of ZnO towards the synthesis of diverse heterocyclic motifs. Being a promising biocompatible nanoparticle, this catalyst has an important contribution in the fields of synthetic chemistry and medicinal chemistry.

Keywords: Bioactive heterocycles, green conditions, nanocatalyst, organic synthesis, pharmacology relevant, zinc oxide.

Graphical Abstract
[1]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[2]
Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P.; Coen, L, M.De Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Advances, 2015, 5, 15233-15266.
[http://dx.doi.org/10.1039/C4RA15710A]
[3]
De Coen, L.M.; Heugebaert, T.S.; García, D.; Stevens, C.V. Synthetic entries to and biological activity of pyrrolopyrimidines. Chem. Rev., 2016, 116(1), 80-139.
[http://dx.doi.org/10.1021/acs.chemrev.5b00483] [PMID: 26699634]
[4]
Saini, M.S.; Kumar, A. Dwivedi; J.; Singh. R. A review. Biological significances of heterocyclic compounds. IJPSR, 2013, 4, 66-77.
[5]
Banerjee, B. Recent developments on nano-ZnO catalyzed synthesis of bioactive heterocycles. J. Nanostruct. Chem., 2017, 7, 379-413.
[http://dx.doi.org/10.1007/s40097-017-0247-0]
[6]
Wachs, I.E. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal. Today, 2005, 100, 79-94.
[http://dx.doi.org/10.1016/j.cattod.2004.12.019]
[7]
Toal, C.B.; Meredith, P.A.; Elliott, H.L. Long-acting dihydropyridine calcium-channel blockers and sympathetic nervous system activity in hypertension: a literature review comparing amlodipine and nifedipine GITS. Blood Press., 2012, 21(Suppl. 1), 3-10.
[http://dx.doi.org/10.3109/08037051.2012.690615] [PMID: 22762301]
[8]
Langer, S.Z.; Arbilla, S.; Benavides, J.; Scatton, B. Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv. Biochem. Psychopharmacol., 1990, 46, 61-72.
[PMID: 1981304]
[9]
Gaeti, W.P.; Obreli-Neto, P.R.; Cuman, R.K.N. Interaction between levothyroxine and phenprocoumon: A case report. Cent. Eur. J. Med., 2014, 9(2), 231-234.
[10]
Jadhav, R.; Raundal, H.; Patil, A.; Bobade, V. Synthesis and biological evaluation of a series of 1,4-disubstituted 1,2,3-triazole derivatives as possible antimicrobial agents. J. Saudi Chem. Soc., 2017, 21, 152-159.
[http://dx.doi.org/10.1016/j.jscs.2015.03.003]
[11]
Kamel, M.M.; Megally Abdo, N.Y. Synthesis of novel 1,2,4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents. Eur. J. Med. Chem., 2014, 86, 75-80.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.047] [PMID: 25147148]
[12]
Tong, W.; Wu, J.C. Sandstrom, A Synthesis of new 20, 30 -dideoxy-20, 30 -α-fused heterocyclic uridines, & some 20, 30-ene-20 -substituted uridines from easily accessible 20, 30 - ene-30 phenylselenonyl uridine. Tetrahedron, 1990, 46, 3037-3060.
[http://dx.doi.org/10.1016/S0040-4020(01)88395-2]
[13]
Skommer, J.; Wlodkowic, D.; Mättö, M.; Eray, M.; Pelkonen, J. HA14-1, a small molecule Bcl-2 antagonist, induces apoptosis and modulates action of selected anticancer drugs in follicular lymphoma B cells. Leuk. Res., 2006, 30(3), 322-331.
[http://dx.doi.org/10.1016/j.leukres.2005.08.022] [PMID: 16213584]
[14]
Jamdagni, P.; Khatri, P.; Rana, J.S. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthesarbor-tristis and their antifungal activity. J. King Saud Univ. Sci., 2018, 30, 168-175.
[http://dx.doi.org/10.1016/j.jksus.2016.10.002]
[15]
Stan, M.; Popa, A.; Toloman, D.; Dehelean, A.; Lung, I.; Katona, G. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater. Sci. Semicond. Process., 2015, 39, 23-29.
[http://dx.doi.org/10.1016/j.mssp.2015.04.038]
[16]
Sangani, M.H.; Moghaddam, M.N.; Mahdi, M. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed. J., 2015, 2, 121-128.
[17]
Santhoshkumar, J.; Venkat Kumar, S.; Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies., 2017, 3, 459-465.
[http://dx.doi.org/10.1016/j.reffit.2017.05.001]
[18]
Bala, N.; Saha, S.; Chakraborty, M. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 2015, 5, 4993-5003.
[http://dx.doi.org/10.1039/C4RA12784F]
[19]
Umamaheswari, A.; Lakshmana, P.S.; Puratchikody, A. Biosynthesis of zinc oxide nanoparticle: a review on greener approach. MOJ BioequivAvailab., 2018, 5, 151-154.
[20]
Mercier, C.; Chabardes, P. Isomerisation of α-acetylenic alcohols into α, β-ethylenic carbonyl derivatives in vapor phase. Stud. Surf. Sci. Catal., 1993, 78, 677-684.
[http://dx.doi.org/10.1016/S0167-2991(08)63382-0]
[21]
Izumi, Y.; Natsume, N.; Takamine, H.; Tamaoki, I.; Urabe, K. Silica-supported heteropoly acid catalyst for liquid-phase friedel–crafts reactions. Bull. Chem. Soc. Jpn., 1989, 62, 2159.
[http://dx.doi.org/10.1246/bcsj.62.2159]
[22]
Tanabe, K.; Holderich, W. F. Industrial application of solid acidbase catalysts. Appl.Catal., 1999, 181, 399-434.
[23]
Reddy, B.M.; Khan, A. Recent advances on TiO2‐ZrO2 mixed oxides as catalysts and catalyst supports. Catal. Rev., Sci. Eng., 2005, 47, 257-296.
[http://dx.doi.org/10.1081/CR-200057488]
[24]
Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. A review on contemporary metal-organic framework materials. Inorg. Chim. Acta, 2016, 446, 61-74.
[http://dx.doi.org/10.1016/j.ica.2016.02.062]
[25]
Swami, S.; Devi, N. Agarwala, A.; Singh, V.; Shrivastava, R. ZnO nanoparticles as reusable heterogeneous catalyst for efficient one pot three component synthesis of imidazo-fusedpolyheterocycles. Tetrahedron Lett., 2016, 57, 1346-1350.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.045]
[26]
Sabir, S.; Arshad, M.; Chaudhari, S.K. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. ScientificWorldJournal, 2014, 2014, 925494
[http://dx.doi.org/10.1155/2014/925494] [PMID: 25436235]
[27]
Rana, S.B.; Singh, P.; Sharma, A.K.; Carbonari, A.W.; Dogra, R. Synthesis and characterization of pure and doped ZnO nanoparticles. J. Optoelectron. Adv. Mater., 2010, 12, 257-261.
[28]
Prabhu, Y.T.; Rao, K.V.; Kumar, V.S.S.; Kumari, B.S. Synthesis of ZnO nanoparticles by a novel surfactant assisted amine combustion method. Advances in Nanoparticles, 2013, 2, 45-50.
[http://dx.doi.org/10.4236/anp.2013.21009]
[29]
Huang, C.; Wang, Y.; Luo, G. Preparation of highly dispersed and small-sized ZnO nanoparticles in a membrane dispersion microreactor and their photocatalytic degradation. Ind. Eng. Chem. Res., 2013, 52, 5683-5690.
[30]
Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl., 2018, 2018, 1062562
[http://dx.doi.org/10.1155/2018/1062562] [PMID: 30073019]
[31]
Bisht, G.; Rayamajhi, S.; Kc, B.; Paudel, S.N.; Karna, D.; Shrestha, B.G. Synthesis, characterization, and study of in vitro cytotoxicity of ZnO-Fe3O4 magnetic compositenanoparticles in human breast cancer cell line (MDA-MB-231) and mouse fibroblast (NIH 3T3). Nanoscale Res. Lett., 2016, 11(1), 537-548.
[http://dx.doi.org/10.1186/s11671-016-1734-9] [PMID: 27914092]
[32]
Bettini, S.; Pagano, R.; Bonfrate, V. Promising piezoelectric properties of new ZnO@octadecylamineadduct. J. Phys. Chem. C, 2015, 119, 20143-20149.
[http://dx.doi.org/10.1021/acs.jpcc.5b06013]
[33]
Pagano, R.; Quarta, A.; Pal, S.; Licciulli, A.; Valli, L.; Bettini, S. Enhanced solar-driven applications of ZnO@Agpatchy nanoparticles. J. Phys. Chem. C, 2017, 121, 27199-27206.
[http://dx.doi.org/10.1021/acs.jpcc.7b09594]
[34]
Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.; Pagano, R.; Valli, L.; Giancane, G. Enhancement of open circuit voltage of a ZnO-based dye sensitized solar cell by means of piezotronic effect. Chem. Asian J., 2016, 11(8), 1240-1245.
[http://dx.doi.org/10.1002/asia.201501325] [PMID: 27061846]
[35]
Pimpliskar, P.V.; Motekar, S.C.; Umarji, G.G.; Lee, W.; Arbuj, S.S. Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study. Photochem. Photobiol. Sci., 2019, 18(6), 1503-1511.
[http://dx.doi.org/10.1039/C9PP00099B] [PMID: 30972400]
[36]
Khan, M.F.; Ansari, A.H.; Hameedullah, M.; Ahmad, E.; Husain, F.M.; Zia, Q.; Baig, U.; Zaheer, M.R.; Alam, M.M.; Khan, A.M.; AlOthman, Z.A.; Ahmad, I.; Ashraf, G.M.; Aliev, G. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Sci. Rep., 2016, 6, 27689-27701.
[http://dx.doi.org/10.1038/srep27689] [PMID: 27349836]
[37]
Akhoon, S.A.; Rubab, S.; Shah, M.A. A benign hydrothermal synthesis of nanopencils-like zinc oxide nanoflowers. Int. Nano Lett., 2015, 5, 9-13.
[http://dx.doi.org/10.1007/s40089-014-0130-7]
[38]
Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach. Res.-Effi. Technol, 2017, 3, 406-413.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]
[39]
Ramesh, M.; Anbuvannan, M.; Viruthagiri, G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc.,, 2015, 136(Pt B), 864-870.
[http://dx.doi.org/10.1016/j.saa.2014.09.105] [PMID: 25459609]
[40]
Rajiv, P.; Rajeshwari, S.; Venckatesh, R. Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 112, 384-387.
[http://dx.doi.org/10.1016/j.saa.2013.04.072] [PMID: 23686093]
[41]
Anbukkarasi, V.; Srinivasan, R.; Elangovan, N. Antimicrobial activity of green synthesized zinc oxide nanoparticles from Emblica officinalis. Int. J. Pharm. Sci. Rev. Res., 2015, 33, 110-115.
[42]
Rajeshkumar, S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol, 2016, 14(1), 195-202.
[http://dx.doi.org/10.1016/j.jgeb.2016.05.007] [PMID: 30647615]
[43]
Qu, J.; Yuan, X.; Wang, X.; Shao, P. Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ. Pollut., 2011, 159(7), 1783-1788.
[http://dx.doi.org/10.1016/j.envpol.2011.04.016] [PMID: 21549461]
[44]
Osman, D.; Mustafa, M. synthesis and characterization of zinc oxide nanoparticles using zinc acetate dihydrate and sodium hydroxide. J. Nanosci. Nanoeng., 2015, 1, 248-251.
[45]
Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71(7), 1308-1316.
[http://dx.doi.org/10.1016/j.chemosphere.2007.11.047] [PMID: 18194809]
[46]
Nagajyothi, P.C.; Minh An, T.N.; Sreekanth, T.V.M.; Lee, J. Il; Joo, D. L.; Lee, K. D. Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater. Lett., 2013, 108, 160-163.
[http://dx.doi.org/10.1016/j.matlet.2013.06.095]
[47]
Dobrucka, R.; Długaszewska, J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci., 2016, 23(4), 517-523.
[http://dx.doi.org/10.1016/j.sjbs.2015.05.016] [PMID: 27298586]
[48]
Bhumi, G.; Savithramma, N. Biological synthesis of zinc oxide nanoparticles from catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity. Int. J. Drug Develop. Res., 2014, 6, 208-214.
[49]
Sundaraselvan, G.; Quine, S.D. Green synthesis of zinc oxide nanoparticle using seed extract of Murraya Koenigii and their antimicrobial activity against some human pathogens. J. Nanosci. Technol., 2017, 3, 289-292.
[50]
Nagajyothi, P.C.; Cha, S.J.; Yang, I.J.; Sreekanth, T.V.; Kim, K.J.; Shin, H.M. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B, 2015, 146, 10-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.02.008] [PMID: 25777265]
[51]
Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci., 2013, 18(2), 144-157.
[PMID: 23914218]
[52]
Sardella, D.; Gatt, R.; Valdramidis, V.P. Metal nanoparticles for controlling fungal proliferation: Quantitative analysis and applications. Curr. Opin. Food Sci., 2019, 30, 49-59.
[http://dx.doi.org/10.1016/j.cofs.2018.12.001]
[53]
Turnlund, J.R.; King, J.C.; Keyes, W.R.; Gong, B.; Michel, M.C. A stable isotope study of zinc absorption in young men: effects of phytate and alpha-cellulose. Am. J. Clin. Nutr., 1984, 40(5), 1071-1077.
[http://dx.doi.org/10.1093/ajcn/40.5.1071] [PMID: 6496386]
[54]
Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7(9), 1063-1077.
[http://dx.doi.org/10.1517/17425247.2010.502560] [PMID: 20716019]
[55]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Nano-Micro Lett., 2015, 7, 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x]
[56]
Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 2011, 77(7), 2325-2331.
[http://dx.doi.org/10.1128/AEM.02149-10] [PMID: 21296935]
[57]
Martínez-Carmona, M.; Gun’ko, Y.; Vallet-Regí, M. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials (Basel), 2018, 8(4), 268.
[http://dx.doi.org/10.3390/nano8040268] [PMID: 29690644]
[58]
Zhang, Z.Y.; Xiong, H.M. Photoluminescent ZnO nanoparticles and their biological applications. Materials (Basel), 2015, 8, 3101-3127.
[http://dx.doi.org/10.3390/ma8063101]
[59]
Xiong, H.M. ZnO nanoparticles applied to bioimaging and drug delivery. Adv. Mater., 2013, 25(37), 5329-5335.
[http://dx.doi.org/10.1002/adma.201301732] [PMID: 24089351]
[60]
Vaseem, M.; Umar, A.; Hahn, Y.B. Hyperlink ZnO nanoparticles: Growth, properties, and applications. In: Umar, A.; Hahn, Y.B. (eds.). In: Metal Oxide Nanostructures and Their Applications; American Scientific Publisher, New York, USA, 2010; 5, pp. 1-3.
[61]
Prasad, K.; Jha, A.K. HYPERLINK ZnO nanoparticles: Synthesis and adsorption study. Nat. Sci., 2009, 1, 129-135.
[62]
Jain, N.; Bhargava, A.; Panwar, J. Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem. Eng. J., 2014, 243, 549-555.
[http://dx.doi.org/10.1016/j.cej.2013.11.085]
[63]
Ammaih, Y.; Lfakir, A.; Hartiti, B.; Ridah, A. Thevenin, Philippe.; Siadat, M. Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications. Opt. Quantum Electron., 2014, 46, 229-234.
[http://dx.doi.org/10.1007/s11082-013-9757-2]
[64]
Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int., 2017, 43, 907-914.
[http://dx.doi.org/10.1016/j.ceramint.2016.10.051]
[65]
Keis, K.; Magnusson, E.; Lindstrom, H.; Lindquist, S.E.; Hagfeldt, A. 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells, 2002, 73, 51-58.
[http://dx.doi.org/10.1016/S0927-0248(01)00110-6]
[66]
Chou, T.P.; Zhang, Q.; Cao, G. Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells. J. Phys. Chem. C, 2007, 111, 18804-18811.
[http://dx.doi.org/10.1021/jp076724f]
[67]
Osmond, G. Zinc white: A review of zinc oxide pigment properties and implications for stability in oil-based paintings. AICCM Bulletin, 2012, 33, 20-29.
[http://dx.doi.org/10.1179/bac.2012.33.1.004]
[68]
Kühn, H. Zinc white a review of zinc oxide pigment properties and implications for stability in oil-based paintings. AICCM Bulletin, 1986, 33, 20-29.
[69]
Zhang, J.; Gu, P.; Xu, J.; Xue, H.; Pang, H. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries. Nanoscale, 2016, 8(44), 18578-18595.
[http://dx.doi.org/10.1039/C6NR07207K] [PMID: 27805219]
[70]
Sharma, V.; Shukla, R.K.; Saxena, N.; Parmar, D.; Das, M.; Dhawan, A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett., 2009, 185(3), 211-218.
[http://dx.doi.org/10.1016/j.toxlet.2009.01.008] [PMID: 19382294]
[71]
Wang, Z.L. Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter, 2004, 16, 829-858.
[http://dx.doi.org/10.1088/0953-8984/16/25/R01]
[72]
Rajeshkumar, S. Synthesis of silver nanoparticles using fresh bark of Pongamiapinnata and characterization of its antibacterial activity against gram positive and gram-negative pathogens. Resour. Technol., 2016, 2, 30-35.
[73]
Lambert, A. ZnO- and TiO2-Based Nanostructures. Nanomaterials (Basel), 2018, 8, 325-329.
[http://dx.doi.org/10.3390/nano8050325]
[74]
Kong, X.Y.; Ding, Y.; Yang, R.; Wang, Z.L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662), 1348-1351.
[http://dx.doi.org/10.1126/science.1092356] [PMID: 14988559]
[75]
Wang, Z.L.; Kang, Z.C. Functional and smart materials - structural evolution and structure analysis; Plenum Press: New York, 1998.
[76]
Deep, A.; Bhatia, R.K.; Kaur, R.; Kumar, S.; Jain, U.K.; Singh, H.; Batra, S.; Kaushik, D.; Deb, P.K. Imidazo[1,2-a]pyridine scaffold as prospective therapeutic agents. Curr. Top. Med. Chem., 2017, 17(2), 238-250.
[http://dx.doi.org/10.2174/1568026616666160530153233] [PMID: 27237332]
[77]
Starrett, J.E., Jr; Montzka, T.A.; Crosswell, A.R.; Cavanagh, R.L. Synthesis and biological activity of 3-substituted imidazo[1,2-a]pyridines as antiulcer agents. J. Med. Chem., 1989, 32(9), 2204-2210.
[http://dx.doi.org/10.1021/jm00129a028] [PMID: 2769690]
[78]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 395637
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[79]
Hisano, T.; Ichikawa, M.; Kito, G.; Nishi, T. Syntheses and pharmacological activities of 2-heterocyclic substituted 4(3H)-quinazolinone derivatives. Chem. Pharm. Bull. (Tokyo), 1972, 20(12), 2575-2584.
[http://dx.doi.org/10.1248/cpb.20.2575] [PMID: 4652820]
[80]
Shaabani, A.; Maleki, A.; Moghimi Rad, J.; Soleimani, E. Cellulose sulfuric acid catalyzed one-pot three-component synthesis of imidazoazines. Chem. Pharm. Bull. (Tokyo), 2007, 55(6), 957-958.
[http://dx.doi.org/10.1248/cpb.55.957] [PMID: 17541205]
[81]
Rousseau, A.L.; Matlaba, P.; Parkinson, C.J. Multicomponent synthesis of imidazo[1,2-a]pyridines using catalytic zinc chloride. Tetrahedron Lett., 2007, 48, 4079.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.008]
[82]
Odell, L.R.; Nilsson, M.T.; Gising, J.; Lagerlund, O.; Muthas, D.; Nordqvist, A.; Karlén, A.; Larhed, M. Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(16), 4790-4793.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.045] [PMID: 19560924]
[83]
Yan, R.L.; Yan, H.; Ma, C.; Ren, Z.Y.; Gao, X.A.; Huang, G.S.; Liang, Y.M. Cu(I)-catalyzed synthesis of imidazo[1,2-a]pyridines from aminopyridines and nitroolefins using air as the oxidant. J. Org. Chem., 2012, 77(4), 2024-2028.
[http://dx.doi.org/10.1021/jo202447p] [PMID: 22239920]
[84]
He, C.; Hao, J.; Xu, H.; Mo, Y.; Liu, H.; Han, J.; Lei, A. Heteroaromatic imidazo[1,2-a]pyridines synthesis from C-H/N-H oxidative cross-coupling/cyclization. Chem. Commun. (Camb.), 2012, 48(90), 11073-11075.
[http://dx.doi.org/10.1039/c2cc35927h] [PMID: 23019572]
[85]
Shaabani, A.; Soleimani, E.; Sarvary, A.; Rezayan, H.; Maleki, A. tin(II) chloride dihydrate catalyzed Groebke condensation: An efficient protocol for the synthesis of 3-Aminoimidazo[1,2-a]pyridines. Chin. J. Chem., 2009, 27, 369-371.
[http://dx.doi.org/10.1002/cjoc.200990060]
[86]
Shaabani, A.; Soleimani, E.; Maleki, A.; Moghimi-Rad, J. Rapid Synthesis of 3-Aminoimidazo. [1,2-a]. Pyridines and Pyrazines. Synth. Commun., 2008, 38, 1090-1095.
[http://dx.doi.org/10.1080/00397910701862931]
[87]
Varma, R.S.; Kumar, D. Microwave-accelerated three-component condensation reaction on clay: solvent-free synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines. Tetrahedron Lett., 1999, 40, 7665-7669.
[http://dx.doi.org/10.1016/S0040-4039(99)01585-3]
[88]
Murthy, V.N.; Nikumbh, S.P.; Kumar, S.P.; Chiranjeevi, Y.; Rao, L.V.; Raghunadh, A. A simple approach for the synthesis of fused quinazoline-based tetracyclic compounds via a multicomponent reaction strategy. Synlett, 2016, 27, 2362-2367.
[http://dx.doi.org/10.1055/s-0035-1562465]
[89]
Han, Y.Y.; Jiang, H.; Wang, R.; Yu, S. Synthesis of tetracyclic quinazolinones using a visible-light-promoted radical cascade approach. J. Org. Chem., 2016, 81(16), 7276-7281.
[http://dx.doi.org/10.1021/acs.joc.6b00869] [PMID: 27257828]
[90]
Taherinia, Z.; Ghorbani-Choghamarani, A.; Hajjami, M. Peptide nanofiber templated zinc oxide nanostructures as nonprecious metal catalyzed N-arylation of amines, one-pot synthesis of imidazo heterocycles and fused quinazolines. Catal. Lett., 2019, 149, 151-168.
[http://dx.doi.org/10.1007/s10562-018-2580-4]
[91]
Kataria, M.; Pramanik, S.; Kumar, M.; Bhalla, V. One pot multicomponent synthesis of tetrahydropyridines promoted by the aggregates of 6, 6-dicyanopentafulvene supported luminescent ZnO nanoparticles. Chem. Commun. (Camb.), 2015, 51, 1483-1486.
[http://dx.doi.org/10.1039/C4CC09058F] [PMID: 25493350]
[92]
Xu, Z.; Cawthon, D.; McCastlain, K.A.; Duhart, H.M.; Newport, G.D.; Fang, H.; Patterson, T.A.; Slikker, W., Jr; Ali, S.F. Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells. Neurotoxicology, 2005, 26(4), 729-737.
[http://dx.doi.org/10.1016/j.neuro.2004.12.008] [PMID: 16112330]
[93]
Misra, M.; Pandey, S.K.; Pandey, V.P.; Pandey, J.; Tripathi, R.; Tripathi, R.P. Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials. Bioorg. Med. Chem., 2009, 17(2), 625-633.
[http://dx.doi.org/10.1016/j.bmc.2008.11.062] [PMID: 19095455]
[94]
Li, X.; Zhao, Y.; Qu, H.; Mao, Z.; Lin, X. Organocatalytic asymmetric multicomponent reactions of aromatic aldehydes and anilines with β-ketoesters: facile and atom-economical access to chiral tetrahydropyridines. Chem. Commun. (Camb.), 2013, 49(14), 1401-1403.
[http://dx.doi.org/10.1039/c2cc38349g] [PMID: 23306277]
[95]
Wang, J.; Lin, Q.; Qiu, J. NO2-Fe(III)PcCl@C -catalyzed one-pot synthesis of tetrahydropyridine derivatives. Russ. J. Gen. Chem., 2017, 87, 821-828.
[http://dx.doi.org/10.1134/S1070363217040259]
[96]
Miwatashi, S.; Arikawa, Y.; Kotani, E.; Miyamoto, M.; Naruo, K.; Kimura, H.; Tanaka, T.; Asahi, S.; Ohkawa, S. Novel inhibitor of p38 MAP kinase as an anti-TNF-α drug: discovery of N-[4-[2-ethyl-4-(3-methylphenyl)-1,3-thiazol-5-yl]-2-pyridyl]benzamide (TAK-715) as a potent and orally active anti-rheumatoid arthritis agent. J. Med. Chem., 2005, 48(19), 5966-5979.
[http://dx.doi.org/10.1021/jm050165o] [PMID: 16162000]
[97]
Papadopoulou, C.; Geronikaki, A.; Hadjipavlou-Litina, D. Synthesis and biological evaluation of new thiazolyl/benzothiazolyl-amides, derivatives of 4-phenyl-piperazine. Farmaco, 2005, 60(11-12), 969-973.
[http://dx.doi.org/10.1016/j.farmac.2005.06.014] [PMID: 16040029]
[98]
Kumar, Y.; Green, R.; Borysko, K.Z.; Wise, D.S.; Wotring, L.L.; Townsend, L.B. Synthesis of 2,4-disubstituted thiazoles and selenazoles as potential antitumor and antifilarial agents: 1. Methyl 4-(isothiocyanatomethyl)thiazole-2-carbamates, -selenazole-2- carbamates, and related derivatives. J. Med. Chem., 1993, 36(24), 3843-3848.
[http://dx.doi.org/10.1021/jm00076a012] [PMID: 8254614]
[99]
Pereira, R.; Gaudon, C.; Iglesias, B.; Germain, P.; Gronemeyer, H.; de Lera, A.R. Synthesis of the PPARbeta/δ-selective agonist GW501516 and C4-thiazole-substituted analogs. Bioorg. Med. Chem. Lett., 2006, 16(1), 49-54.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.060] [PMID: 16242326]
[100]
Tsurumi, Y.; Ueda, H.; Hayashi, K.; Takase, S.; Nishikawa, M.; Kiyoto, S.; Okuhara, M. WS75624 A and B, New endothelin converting enzyme inhibitors isolated fromsaccharothrix sp. No. 75624. J. Antibiot. (Tokyo), 1995, 48, 1066-1072.
[http://dx.doi.org/10.7164/antibiotics.48.1066] [PMID: 7490208]
[101]
Bell, F.W.; Cantrell, A.S.; Högberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Noréen, R. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38(25), 4929-4936.
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[102]
Millan, D.S.; Prager, R.H.; Brand, C.; Hart, P.H. The synthesis and activity of oxazole and thiazole analogues of urocanic acid. Tetrahedron, 2000, 56, 811-816.
[http://dx.doi.org/10.1016/S0040-4020(00)00019-3]
[103]
Wang, W.L.; Yao, D.Y.; Gu, M.; Fan, M.Z.; Li, J.Y.; Xing, Y.C.; Nan, F.J. Synthesis and biological evaluation of novel bisheterocycle-containing compounds as potential anti-influenza virus agents. Bioorg. Med. Chem. Lett., 2005, 15(23), 5284-5287.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.046] [PMID: 16183283]
[104]
Zarghi, A.; Najafnia, L.; Daraee, B.; Dadrass, O.G.; Hedayati, M. Synthesis of 2,3-diaryl-1,3-thiazolidine-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(20), 5634-5637.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.084] [PMID: 17822894]
[105]
Ueda, S.; Terauchi, H.; Yano, A.; Matsumoto, M.; Kubo, T.; Kyoya, Y.; Suzuki, K.; Ido, M.; Kawasaki, M. 4,5-dialkylsubstituted 2-imino-1,3-thiazolidine derivatives as potent inducible nitric oxide synthase inhibitors. Bioorg. Med. Chem., 2004, 12(15), 4101-4116.
[http://dx.doi.org/10.1016/j.bmc.2004.05.031] [PMID: 15246088]
[106]
Baviskar, B.A.; Khadabadi, S.S.; Deore, S.L. Synthesis and evaluation of some new thiazolidin-4-one derivatives as potential antimicrobial agents. J. Chem., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/656271]
[107]
Charati, R.F.; Hossaini, Z.; Zareyee, Da.; Afrashteh, S.; Hosseinzadehb, M. ZnO-Nanorods as an efficient catalyst for the synthesis of 1,3-thiazolidine derivatives by aqueous multicomponent reactionsof isothiocyanates. J. Heterocycl. Chem., 2017, 54, 1937-1942.
[http://dx.doi.org/10.1002/jhet.2789]
[108]
Li, Y.S.; Tian, H.; Zhao, D.S.; Hu, D.K.; Liu, X.Y.; Jin, H.W.; Song, G.P.; Cui, Z.N. Synthesis and bioactivity of pyrazole and triazole derivatives as potential PDE4 inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(15), 3632-3635.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.002] [PMID: 27289320]
[109]
Nayak, N.; Ramprasad, J.; Dalimba, U.; Yogeeswari, P.; Sriram, D.; Kumar, H.S.S.; Peethambar, S.K.; Achur, R. Synthesis of new pyrazole-triazole hybrids by click reaction using a green solvent and evaluation of their antitubercular and antibacterial activity. Res. Chem. Intermed., 2016, 42, 3721-3742.
[http://dx.doi.org/10.1007/s11164-015-2241-9]
[110]
Suleymanoglu, N.; Ustabas, R.; Direkel, S.; Alpaslan, Y.B.; Unver, Y. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 2017, 1150, 82-87.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.075]
[111]
Almasirad, A.; Tabatabai, S.A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5- [2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg. Med. Chem. Lett., 2004, 14(24), 6057-6059.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.072] [PMID: 15546729]
[112]
Moodley, V.; Maddila, S.; Jonnalagadda, S.B.; van Zy, E.W. Synthesis of triazolidine-3-one derivatives through the nanocellulose/hydroxyapatite-catalyzed reaction of aldehydes and semicarbazide. New J. Chem., 2017, 41, 6455-6463.
[http://dx.doi.org/10.1039/C7NJ00855D]
[113]
Choghamarani, A.G.; Sardari, S. Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives. Chem. Pap., 2012, 66, 1078-1081.
[http://dx.doi.org/10.2478/s11696-012-0228-1]
[114]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Rana, S. Singh. P.; Jonnalagadda, S.B.Synthesis of novel pyrazole-based triazolidin-3-one derivatives by using ZnO/ZrO2 as a reusable catalyst under green conditions. Appl. Organomet. Chem., 2019, 33, 4722-4732.
[http://dx.doi.org/10.1002/aoc.4722]
[115]
MacDiarmid, A.G. Polyaniline and polypyrrole: Where are we headed? Synth. Met., 1997, 84, 27-34.
[http://dx.doi.org/10.1016/S0379-6779(97)80658-3]
[116]
Denny, W.A.; Rewcastle, G.W.; Baguley, B.C.J. Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of “minimal” DNA-intercalating agents which may not act via topoisomerase II. J. Med. Chem., 1990, 33(2), 814-819.
[http://dx.doi.org/10.1021/jm00164a054] [PMID: 2153829]
[117]
Jiang, S.; Lu, H.; Liu, S.; Zhao, Q.; He, Y.; Debnath, A.K.N. N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob. Agents Chemother., 2004, 48(11), 4349-4359.
[http://dx.doi.org/10.1128/AAC.48.11.4349-4359.2004] [PMID: 15504864]
[118]
Toja, E.; Selva, D.; Schiatti, P. 3-Alkyl-2-aryl-3H-naphth[1,2-d]imidazoles, a novel class of nonacidic antiinflammatory agents. J. Med. Chem., 1984, 27(5), 610-616.
[http://dx.doi.org/10.1021/jm00371a010] [PMID: 6609233]
[119]
Demopoulos, V.J.; Rekka, E. Isomeric benzoylpyrroleacetic acids: some structural aspects for aldose reductase inhibitory and anti-inflammatory activities. J. Pharm. Sci., 1995, 84(1), 79-82.
[http://dx.doi.org/10.1002/jps.2600840119] [PMID: 7714750]
[120]
Lehuédé, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.; Vierfond, J. Synthesis and antioxidant activity of new tetraarylpyrroles. Eur. J. Med. Chem., 1999, 34(11), 991-996.
[http://dx.doi.org/10.1016/S0223-5234(99)00111-7] [PMID: 10889322]
[121]
Cerreto, F.; Villa, A.; Retico, A.; Scalzo, M. Studies on anti-Candida agents with a pyrrole moiety. Synthesis and microbiological activity of some 3-aminomethyl-1,5-diaryl-2-methyl-pyrrole derivatives. Eur. J. Med. Chem., 1992, 27, 701-708.
[http://dx.doi.org/10.1016/0223-5234(92)90090-N]
[122]
Del Poeta, M.; Schell, W.A.; Dykstra, C.C.; Jones, S.; Tidwell, R.R.; Czarny, A.; Bajic, M.; Kumar, A.; Boykin, D.; Perfect, J.R. Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob. Agents Chemother., 1998, 42(10), 2495-2502.
[http://dx.doi.org/10.1128/AAC.42.10.2495] [PMID: 9756747]
[123]
Cheng, L.; Lightner, D.A. Synthesis of Cyanopyrroles. Synthesis, 1999, 1, 46-48.
[http://dx.doi.org/10.1055/s-1999-3669]
[124]
Paal, C. Chem. Ber., 1885, 18, 367.
[http://dx.doi.org/10.1002/cber.18850180175]
[125]
Yan, R.L.; Luo, J.; Wang, C.X.; Ma, C.W.; Huang, G.S.; Liang, Y.M. Cu (I)-catalyzed synthesis of polysubstituted pyrroles from dialkyl ethylenedicarboxylates and beta-enamino ketones or esters in the presence of O2. J. Org. Chem., 2010, 75(15), 5395-5397.
[http://dx.doi.org/10.1021/jo101022k] [PMID: 20590089]
[126]
Das, B.; Reddy, G.C.; Balasubramanyam, P.; Veeranjaneyulu, B. An efficient new method for the synthesis of polysubstituted pyrroles. Synthesis, 2010, 10, 1625-1628.
[http://dx.doi.org/10.1055/s-0029-1218703]
[127]
Dieter, R.K.; Yu, H. A facile synthesis of polysubstituted pyrroles. Org. Lett., 2000, 2(15), 2283-2286.
[http://dx.doi.org/10.1021/ol006050q] [PMID: 10930264]
[128]
Iwasawa, N.; Maeyama, K.; Saitou, M. Reactions of propargyl metallic species generated by the addition of alkynyl lithiums to fischer-type carbene complexes. J. Am. Chem. Soc., 1997, 119, 1486-1487.
[http://dx.doi.org/10.1021/ja962173n]
[129]
Furstner, A.; Weintrit, H.; Hupperts, A.A. New, titanium-mediated approach to pyrroles: First synthesis of lukianol A and lamellarin O dimethyl ether. J. Org. Chem., 1995, 60, 6637-6641.
[http://dx.doi.org/10.1021/jo00125a068]
[130]
Katritzky, A.; Jiang, J.; Steel, P.J. 1-Aza-1,3-bis(triphenylphosphoranylidene)propane: A Novel: CHCH2N. Synthon. J. Org. Chem., 1994, 59, 64551-64555.
[http://dx.doi.org/10.1021/jo00095a034]
[131]
Sabbaghan, M.; Sanaeishoar, H.; Ghalaei, A.; Sofalgar, P. Solvent-free synthesis of polysubstituted pyrroles catalyzed by ZnO nanorods, J. Iran. Chem. SOC, 2015, 12, 2199-2204.
[132]
Marshal, P.G. Rodd’s Chemistry of Carbon Compounds, 2nd ed; Elsevier: New York. 1970, 2 Part D;, 369-375.
[133]
Rao, Y.S. Recent advances in the chemistry of unsaturated lactones. Chem. Rev., 1976, 76, 625-694.
[http://dx.doi.org/10.1021/cr60303a004]
[134]
Knight, D.W. Synthetic approaches to butenolides. Contemp. Org. Synth., 1994, 1, 287-315.
[http://dx.doi.org/10.1039/co9940100287]
[135]
Yoneda, E.; Zhang, S.W.; Zhou, D.Y.; Onitsuka, K.; Takahashi, S. Ruthenium-catalyzed cyclocarbonylation of allenyl alcohols and amines: selective synthesis of lactones and lactams. J. Org. Chem., 2003, 68(22), 8571-8576.
[http://dx.doi.org/10.1021/jo0350615] [PMID: 14575487]
[136]
Rossi, R.; Bellina, F.; Biagetti, M.; Mannina, L. Stereocontrolled synthesis of lissoclinolide by sequential transition metal-catalyzed lactonization/cross-coupling reactions. Tetrahedron Lett., 1998, 39, 7799-7802.
[http://dx.doi.org/10.1016/S0040-4039(98)01705-5]
[137]
Levy, L.M.; Cabrera, G.M.; Wright, J.E.; Seldes, A.M. 5H-furan-2-ones from fungal cultures of Aporpium caryae. Phytochemistry, 2003, 62(2), 239-243.
[http://dx.doi.org/10.1016/S0031-9422(02)00455-7] [PMID: 12482462]
[138]
Hein, S.M.; Gloer, J.B.; Koster, B.; Malloch, D. Bombardolides: new antifungal and antibacterial γ-lactones from the coprophilous fungus Bombardioidea anartia. J. Nat. Prod., 2001, 64(6), 809-812.
[http://dx.doi.org/10.1021/np000617u] [PMID: 11421752]
[139]
Pour, M.; Spulák, M.; Balsánek, V.; Kunes, J.; Kubanová, P.; Buchta, V. Synthesis and structure-antifungal activity relationships of 3-aryl-5-alkyl-2,5-dihydrofuran-2-ones and their carbanalogues: further refinement of tentative pharmacophore group. Bioorg. Med. Chem., 2003, 11(13), 2843-2866.
[http://dx.doi.org/10.1016/S0968-0896(03)00220-7] [PMID: 12788357]
[140]
Hoye, T.R.; Tan, L. Total synthesis of the potent antitumor, bis-tetrahydrofuranylannonaceousacetogenins (+)-asimicin and (+)-bullatacin. Tetrahedron Lett., 1995, 36, 1981-1984.
[http://dx.doi.org/10.1016/0040-4039(95)00207-S]
[141]
Tekale, S.U.; Kauthale, S.S.; Pagore, V.P.; Jadhav, V.B.; Pawar, R.P. ZnO nanoparticle-catalyzed efficient one-pot three-component synthesis of 3, 4, 5-trisubstituted furan-2 (5H)-ones. J. Iran. Chem. Soc., 2013, 10, 1271-1277.
[http://dx.doi.org/10.1007/s13738-013-0266-9]
[142]
Shafiee, M.R.M.; Mansoor, S.S.; Ghashang, M.; Fazlinia, A. Preparation of 3, 4, 5-substituted furan-2(5H)-ones using aluminum hydrogen sulfate as an efficient catalyst. Compt. Rend. Chim., 2014, 17, 131-134.
[http://dx.doi.org/10.1016/j.crci.2013.06.009]
[143]
Doostmohammadi, R.; Maghsoodlou, M.T.; Hazeri, N.; Habibi-Khorassani, S.M. An efficient one-pot multi-component synthesis of 3, 4, 5-substituted furan-2 (5H)-ones catalyzed by tetra-n-butylammonium bisulfate. Chin. Chem. Lett., 2013, 24, 901.
[http://dx.doi.org/10.1016/j.cclet.2013.06.004]
[144]
Safaei-Ghomi, J.; Heidari-Baghbahadorani, E.; Shahbazi-Alavi, H. SnO nanoparticles: A robust and reusable heterogeneous catalyst for the synthesis of 3,4,5-substituted furan-2(5H)-ones. Monatsh. Chem., 2015, 146, 181-186.
[http://dx.doi.org/10.1007/s00706-014-1281-y]
[145]
Souza, M.V.N.D. The furan-2(5H)-ones: Recent synthetic methodologies and its application in total synthesis of natural products. Mini Rev. Org. Chem., 2005, 2, 139-145.
[http://dx.doi.org/10.2174/1570193053544427]
[146]
Bahramian, F.; Fazlinia, A.; Mansoor, S.S.; Ghashang, M.; Azimi, F.; Biregan, M.N. Preparation of 3,4,5-substituted furan-2(5H)-ones using HY zeolite nano-powder as an efficient catalyst. Res. Chem. Intermed., 2016, 42, 6501-6510.
[http://dx.doi.org/10.1007/s11164-016-2476-0]
[147]
Saha, M.; Das, A.R. Access of diverse 2-pyrrolidinone, 3,4,5-substituted furanone and 2-Oxo-dihydropyrroles applying graphene oxide nanosheet: Unraveling of solvent selectivity. ChemistrySelect, 2017, 2, 10249-10260.
[http://dx.doi.org/10.1002/slct.201701989]
[148]
Quintela, J.M.; Peinador, C.; Botana, L.; Estévez, M.; Riguera, R. Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines. Bioorg. Med. Chem., 1997, 5(8), 1543-1553.
[http://dx.doi.org/10.1016/S0968-0896(97)00108-9] [PMID: 9313860]
[149]
Faidallah, H.M.; Rostom, S.A.; Khan, K.A. Synthesis of some polysubstituted nicotinonitriles and derived pyrido[2,3-d]pyrimidines as in vitro cytotoxic and antimicrobial candidates. J. Chem., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/2135893]
[150]
Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono, H.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Sakai, K.; Inbe, H.; Takeshita, K.; Niki, T.; Umeda, M.; Bacon, K.B.; Ziegelbauer, K.B.; Lowinger, T.B. Discovery of novel and selective IKK-beta serine-threonine protein kinase inhibitors. Part 1. Bioorg. Med. Chem. Lett., 2003, 13(5), 913-918.
[http://dx.doi.org/10.1016/S0960-894X(02)01046-6] [PMID: 12617920]
[151]
Marinescu, M. 2-aminopyridine – a classic and trendy pharmacophore. Int. J. Pharma Bio Sci., 2017, 8, 338-355.
[http://dx.doi.org/10.22376/ijpbs.2017.8.2.p338-355]
[152]
Appendino, G.; Mercalli, E.; Fuzzati, N.; Arnoldi, L.; Stavri, M.; Gibbons, S.; Ballero, M.; Maxia, A. Antimycobacterial coumarins from the sardinian giant fennel (Ferula communis). J. Nat. Prod., 2004, 67(12), 2108-2110.
[http://dx.doi.org/10.1021/np049706n] [PMID: 15620264]
[153]
Majee, D.; Biswas, S.; Mobin, S.M.; Samanta, S. Domino reaction of cyclic sulfamidate imines with Morita-Baylis-Hillman acetates promoted by DABCO: a metal-free approach to functionalized nicotinic acid derivatives. Org. Biomol. Chem., 2017, 15(15), 3286-3297.
[http://dx.doi.org/10.1039/C7OB00240H] [PMID: 28358153]
[154]
Bagley, M.C.; Lin, Z.; Pope, S.J.A. Rapid synthesis of 3-cyanopyridine-derived chromophores with two-dimensional tunability and solvatochromic photophysical properties. Chem. Commun. (Camb.), 2009, 34(34), 5165-5167.
[http://dx.doi.org/10.1039/b910664b] [PMID: 20448981]
[155]
Kankala, S.; Pagadala, R.; Maddila, S.; Vasam, C.S.; Jonnalagadda, S.B. Silver(I)–N-heterocyclic carbene catalyzed multicomponent reactions: a facile synthesis of multisubstituted pyridines. RSC Advances, 2015, 5, 105446-105452.
[http://dx.doi.org/10.1039/C5RA16582B]
[156]
Zolfigol, M.A.; Kiafar, M.; Yarie, M.; Taherpour, A.A.; Saeidi-Rad, M. Experimental and theoretical studies of the nanostructured Fe3O4@SiO2@(CH2)3ImC(CN)3 catalyst for 2-amino-3-cyanopyridine preparation via an anomeric based oxidation. RSC Advances, 2016, 6, 50100-50111.
[http://dx.doi.org/10.1039/C6RA12299J]
[157]
Maleki, A.; Movahed, H.; Ravaghi, P. Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohydr. Polym., 2017, 156, 259-267.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.002] [PMID: 27842821]
[158]
Davoodi, F.; Dekamin, M.G.; Alirezvani, Z. A practical and highly efficient synthesis of densely functionalized nicotinonitrile derivatives catalyzed by zinc oxide-decorated superparamagnetic silica attached to graphene oxide nanocomposite. Appl. Organomet. Chem., 2019, 33, 4735.
[http://dx.doi.org/10.1002/aoc.4735]
[159]
Schenck, L.W.; Kuna, K.; Frank, W.; Albert, A.; Asche, C.; Kucklaender, U. 1,4,9,10-Anthradiquinone as precursor for antitumor compounds. Bioorg. Med. Chem., 2006, 14(10), 3599-3614.
[http://dx.doi.org/10.1016/j.bmc.2006.01.026] [PMID: 16458517]
[160]
Pors, K.; Shnyder, S.D.; Teesdale-Spittle, P.H.; Hartley, J.A.; Zloh, M.; Searcey, M.; Patterson, L.H. Synthesis of DNA-directed pyrrolidinyl and piperidinyl confined alkylating chloroalkylaminoanthraquinones: potential for development of tumor-selective N-oxides. J. Med. Chem., 2006, 49(24), 7013-7023.
[http://dx.doi.org/10.1021/jm0608154] [PMID: 17125254]
[161]
Waser, M.; Falk, H. Towards second generation hypericin based photosensitizers for photodynamic therapy. Eur. J. Org. Chem., 2006, 11, 547-558.
[162]
Zhang, S.J.; Jia, Z.P.; Wang, Y.G. Design, synthesis and antitumor activities of novel 7-arylseleno-7-deoxydaunomycinone derivatives. Bioorg. Med. Chem., 2002, 10(12), 3899-3904.
[http://dx.doi.org/10.1016/S0968-0896(02)00321-8] [PMID: 12413841]
[163]
Cheng, C.C.; Zee-Cheng, R.K. The design, synthesis and development of a new class of potent antineoplastic anthraquinones. Prog. Med. Chem., 1983, 20, 83-118.
[http://dx.doi.org/10.1016/S0079-6468(08)70217-0] [PMID: 6356227]
[164]
Huang, Q.; Lu, G.; Shen, H.M.; Chung, M.C.; Ong, C.N. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev., 2007, 27(5), 609-630.
[http://dx.doi.org/10.1002/med.20094] [PMID: 17022020]
[165]
Kertész, J.; Huszthy, P.; Kormos, A.; Bezúr, L. Synthesis of silica gel-bound acridino-18-crown-6 ether and preliminary studies on its metal ion selectivity. Tetrahedron, 2011, 67, 5206-5212.
[http://dx.doi.org/10.1016/j.tet.2011.05.050]
[166]
Elwahy, A.H.M.; Abbas, A.A. Synthesis of N-pivot lariat ethers. J. Heterocycl. Chem., 2008, 45, 1.
[http://dx.doi.org/10.1002/jhet.5570450101]
[167]
Abbas, A.A.; Elwahy, A.H.M. Synthesis of C-pivot lariat ethers. J. Heterocycl. Chem., 2009, 46, 1035-1079.
[http://dx.doi.org/10.1002/jhet.225]
[168]
Sharghi, H.; Khoshnood, A.; Doroodmand, M.M.; Khalifeh, R. Rapid, eco-friendly, and one-pot synthesis of new lariat ethers based on anthraquinone by using ZnO nanoparticles via “Mannich” reaction under solvent-free condition. J. Heterocycl. Chem., 2016, 53, 164-174.
[http://dx.doi.org/10.1002/jhet.1811]
[169]
Marcos, I.S.; Moro, R.F.; Costales, I.; Basabe, P.; Díez, D.; Gil, A.; Mollinedo, F.; Pérez-de la Rosa, F.; Pérez-Roth, E.; Padrón, J.M. Synthesis and biological activity of polyalthenol and pentacyclindole analogues. Eur. J. Med. Chem., 2014, 73, 265-279.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.012] [PMID: 24412720]
[170]
Girgis, A.S. Regioselective synthesis of dispiro[1H-indene-2,3′-pyrrolidine-2′,3”-[3H]indole]-1,2”(1”H)-diones of potential anti-tumorproperties. Eur. J. Med. Chem., 2009, 44, 91-100.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.013] [PMID: 18455272]
[171]
Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2016, 20(1), 299-344.
[http://dx.doi.org/10.1007/s11030-015-9629-8] [PMID: 26419598]
[172]
Arun, Y.; Bhaskar, G.; Balachandran, C.; Ignacimuthu, S.; Perumal, P.T. Facile one-pot synthesis of novel dispirooxindole-pyrrolidine derivatives and their antimicrobial and anticancer activity against A549 human lung adenocarcinoma cancer cell line. Bioorg. Med. Chem. Lett., 2013, 23(6), 1839-1845.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.023] [PMID: 23395665]
[173]
Bahuguna, A.; Kumar, S.; Sharma, V.; Reddy, K.L.; Bhattacharyya, K.; Ravikumar, P.C.; Krishnan, V. Nanocomposite of MoS2 RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids. ACS Sustain. Chem. Eng., 2017, 5, 8551-8567.
[174]
Rouatbi, F.; Askri, M.; Nana, F.; Kirsch, G.; Sriram, D.; Yogeeswari, P. Synthesis of newspirooxindole derivatives through 1,3-dipolar cycloaddition of azomethine ylides and theirantitubercular activity. Tetrahedron Lett., 2016, 57, 163-167.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.056]
[175]
Xia, P.J.; Sun, Y-H.; Xiao, J.A.; Zhou, Z.F.; Wen, S.S.; Xiong, Y.; Ou, G.C.; Chen, X.Q.; Yang, H. Isatins and various primary or cyclic secondary amines formed azomethine ylides which underwent self 1,3-dipolar–[3+3] cyclizations. J. Org. Chem., 2015, 80, 11573-11579.
[http://dx.doi.org/10.1021/acs.joc.5b02088] [PMID: 26517582]
[176]
Malini, M.; Periyaraja, S.; Shanmugam, P. Morita-Baylis-Hillman reaction of pyridine-2, 3, and 4-carboxaldehydes and N-methyl isatin with mono and diacrylates: synthesis of highly functionalized pyridine ligands and isatin derivatives. Tetrahedron Lett., 2015, 56, 5123-5127.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.027]
[177]
Kumar, N.S.; Reddy, M.S.; Bheeram, V.R.; Mukkamala, S.B.; Chowhan, L.R.; Rao, L.C. Zinc oxide nanoparticles as efficient catalyst for the synthesis of noveldi-spiroindolizidinebisoxindoles in aqueous medium. Environ. Chem. Lett., 2019, 17, 455-464.
[http://dx.doi.org/10.1007/s10311-018-0772-1]
[178]
Kawase, M.; Shah, A.; Gaveriya, H.; Motohashi, N.; Sakagami, H.; Varga, A.; Molnár, J. 3,5-dibenzoyl-1,4-dihydropyridines: synthesis and MDR reversal in tumor cells. Bioorg. Med. Chem., 2002, 10(4), 1051-1055.
[http://dx.doi.org/10.1016/S0968-0896(01)00363-7] [PMID: 11836114]
[179]
Mannhold, R.; Jablonka, B.; Voigdt, W.; Schoenafinger, K.; Schravan, K. Calcium- and calmodulin-antagonism of elnadipine derivatives: comparative SAR. Eur. J. Med. Chem., 1992, 27, 229-235.
[http://dx.doi.org/10.1016/0223-5234(92)90006-M]
[180]
Visentin, S.; Rolando, B.; Stilo, D.A.; Fruttero, R.; Novara, M.; Carbone, E.; Roussel, C. V anthuyne, N.; Gasco, A. Reactivity of Tris(allyl)aluminum toward Pyridine: Coordination versus Carbometalation. J. Med. Chem., 2004, 475, 2688.
[http://dx.doi.org/10.1021/jm031109v] [PMID: 15115410]
[181]
Toniolo, R.; Di Narda, F.; Bontempelli, G.; Ursini, F. An electroanalytical investigation on the redox properties of lacidipine supporting its anti-oxidant effect. Bioelectrochemistry, 2000, 51(2), 193-200.
[http://dx.doi.org/10.1016/S0302-4598(00)00073-8] [PMID: 10910169]
[182]
Adibi, H.; Hajipour, A.R. A convenient and efficient protocol for oxidative aromatization of Hantzsch 1,4-dihydropyridines using benzyltriphenylphosphonium peroxymonosulfate under almost neutral reaction conditions. Bioorg. Med. Chem. Lett., 2007, 17(4), 1008-1012.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.033] [PMID: 17127056]
[183]
Zhou, X.F.; Zhang, L.; Tseng, E.; Scott-Ramsay, E.; Schentag, J.J.; Coburn, R.A.; Morris, M.E. New 4-aryl-1,4-dihydropyridines and 4-arylpyridines as P-glycoprotein inhibitors. Drug Metab. Dispos., 2005, 33(3), 321-328.
[http://dx.doi.org/10.1124/dmd.104.002089] [PMID: 15585608]
[184]
Malaisse, W.J.; Mathias, P.C.F. Stimulation of insulin release by an organic calcium agonist. Diabetologia, 1985, 28(3), 153-156.
[PMID: 3888757]
[185]
Krauze, A.; Germane, S.; Eberlins, O.; Sturms, I.; Klusa, V.; Duburs, G. Derivatives of 3-cyano-6-phenyl-4-(3′-pyridyl)pyridine-2(1H)-thione and their neurotropic activity. Eur. J. Med. Chem., 1999, 34, 301-310.
[http://dx.doi.org/10.1016/S0223-5234(99)80081-6]
[186]
Zonouz, A.M.; Sahranavard, N. Synthesis of 1,4-Dihydropyridine Derivatives Under Aqueous Media. J. Chem., 2010, 7, 72-76.
[187]
Yang, J.; Jiang, C.; Yang, J.; Qian, C.; Fang, D. A clean procedure for the synthesis of 1,4- dihydropyridines via Hantzsch reaction in water. Green Chem. Lett. Rev., 2013, 6, 262-267.
[http://dx.doi.org/10.1080/17518253.2013.781686]
[188]
Aswin, K.; Logaiya, K.; Sudhan, P.N.; Mansoor, S.S. An efficient one-pot synthesis of 1,4-dihydropyridine derivatives through Hantzsch reaction catalysed by melamine trisulfonic acid. J. Taibah Uni. Sci., 2012, 6, 1-9.
[http://dx.doi.org/10.1016/j.jtusci.2012.12.001]
[189]
Heravi, M.M.; Bakhtiri, K.; Javadi, N.M.; Bamoharram, F.F.; Saeedi, M.; Oskooi, H.A. K7[PW11CoO40]-catalyzed one-pot synthesis of polyhydroquinoline derivatives via the Hantzsch three component condensation. J. Mol. Catal. Chem., 2007, 264, 50-52.
[http://dx.doi.org/10.1016/j.molcata.2006.09.004]
[190]
Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. An efficient one-step synthesis of 1, 4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett., 2009, 50, 5248-5250.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.018]
[191]
Reen, G.K.; Ahuja, M.; Kumar, A.; Patidar, R.; Sharma, P. ZnO nanoparticle-catalyzed multicomponent reaction for the synthesis of 1,4-diaryl dihydropyridines. Org. Prep. Proced. Int., 2017, 49, 273-286.
[http://dx.doi.org/10.1080/00304948.2017.1320927]
[192]
Simpson, T.J.; Thomson, R.H. The Chemistry of Natural Products; Blackie: London, 1985.
[193]
Lipshuts, B.H. Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem. Rev., 1986, 86, 795-819.
[http://dx.doi.org/10.1021/cr00075a005]
[194]
Buu-Hoi, N.; Saint-Ruf, G.; Loc, T.B.; Xuong, N.D. Oxygen heterocycles. Part VIII. Aroylbenzofurans, aroyldibenzofurans, and aroylcoumarins of potential biological interest. J. Chem. Soc., 1957, 2593-2596
[http://dx.doi.org/10.1039/JR9570002593]
[195]
Gündoğdu-Karaburun, N.; Benkli, K.; Tunali, Y.; Uçucu, U.; Demirayak, S. Synthesis and antifungal activities of some aryl [3-(imidazol-1-yl/triazol-1-ylmethyl) benzofuran-2-yl] ketoximes. Eur. J. Med. Chem., 2006, 41(5), 651-656.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.013] [PMID: 16554110]
[196]
Baraldi, P.G.; Romagnoli, R.; Beria, I.; Cozzi, P.; Geroni, C.; Mongelli, N.; Bianchi, N.; Mischiati, C.; Gambari, R. Synthesis and antitumor activity of new benzoheterocyclic derivatives of distamycin A. J. Med. Chem., 2000, 43, 2675-2684.
[PMID: 10893305]
[197]
Perkin, W.H.F.R.S. On some new bromine derivatives of coumarin. J. Chem. Soc., 1870, 23, 368-371.
[http://dx.doi.org/10.1039/JS8702300368]
[198]
Jumbam, N.D.; Yedwa, M.P.I.; Masamba, W. Titanium-induced synthesis of benzofurans. Bull. Chem. Soc. Ethiop., 2011, 25, 157-160.
[http://dx.doi.org/10.4314/bcse.v25i1.63383]
[199]
Thielges, S.; Meddah, E.; Bisseret, P.; Eustache, J. New synthesis of benzo[b]furan and indole derivatives from 1,1-dibromo-1-alkenes using a tandem Pd-assisted cyclization–coupling reaction. Tetrahedron Lett., 2004, 45, 907-910.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.118]
[200]
Hennings, D.D.; Iwasa, S.V.H. Anion-accelerated palladium-mediated intramolecular cyclizations: Synthesis of benzofurans, indoles, and a benzopyran. Tetrahedron Lett., 1997, 36, 6379-6382.
[http://dx.doi.org/10.1016/S0040-4039(97)01468-8]
[201]
Takeda, N.; Miyata, O.; Naito, T. Efficient Synthesis of benzofurans utilizing [3,3]-sigmatropic rearrangement triggered by N-trifluoroacetylation of oxime ethers: Short synthesis of natural 2-arylbenzofurans. Eur. J. Org. Chem., 2007, 9, 1491-1509.
[http://dx.doi.org/10.1002/ejoc.200601001]
[202]
Wright, J.B. Some reactions of mannich bases derived from α-phenoxyacetophenone and α-phenoxypropiophenone. J. Org. Chem., 1960, 25, 1867-1872.
[http://dx.doi.org/10.1021/jo01081a010]
[203]
Zhang, Q.; Xie, C.; Zhang, S.; Wang, A.; Zhu, B.; Wang, L.; Yang, Z. Identification and pattern recognition analysis of chinese liquors by doped nano ZnO gas sensor array. Sens. Actuators B Chem., 2005, 110, 370-376.
[http://dx.doi.org/10.1016/j.snb.2005.02.017]
[204]
Hongfeng, L.; Jun, L.; Ya, B.; Yanzhong, B.L. New domino approach for the synthesis of 2,3-disubstituted benzo[b]furans via copper-catalyzed multi-component coupling reactions followed by cyclization. Tetrahedron Lett., 2009, 50, 2353-2357.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.204]
[205]
Dai, W.M.; Lai, K.W. Chemistry of aminophenols. Part 3: First synthesis of nitrobenzo[b]furans via a coupling–cyclization approach. Tetrahedron Lett., 2002, 43, 9377-9380.
[http://dx.doi.org/10.1016/S0040-4039(02)02333-X]
[206]
Jaseer, E.A.; Prasad, D.J.C.; Sekar, G. Domino synthesis of 2-arylbenzo[b]furans by copper(II)-catalyzed coupling of o-iodophenols and aryl acetylenes. Tetrahedron, 2010, 66, 2077-2082.
[http://dx.doi.org/10.1016/j.tet.2010.01.026]
[207]
Safaei-Ghomi, J.; Ghasemzadeh, M.A. Zinc oxide nanoparticle promoted highly efficientone pot three-component synthesis of 2,3-disubstituted benzofurans. Arab. J. Chem., 2017, 10, 1774-1780.
[http://dx.doi.org/10.1016/j.arabjc.2013.06.030]
[208]
Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 2007, 24(1), 223-246.
[http://dx.doi.org/10.1039/b509528j] [PMID: 17268614]
[209]
Kamal, A.; Reddy, B.V.; Sridevi, B.; Ravikumar, A.; Venkateswarlu, A.; Sravanthi, G.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D. Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorg. Med. Chem. Lett., 2015, 25(18), 3867-3872.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.057] [PMID: 26253635]
[210]
Kaur, R.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg. Med. Chem., 2017, 25(17), 4533-4552.
[http://dx.doi.org/10.1016/j.bmc.2017.07.003] [PMID: 28720329]
[211]
Schindler, F.; Zähner, H. [Metabolic products of microorganisms. 91. Tryptanthrin, a tryptophan derived antibiotic from Candida lipolytica]. Arch. Mikrobiol., 1971, 79(3), 187-203.
[http://dx.doi.org/10.1007/BF00408783] [PMID: 5136850]
[212]
Iwaki, K.; Ohashi, E.; Arai, N.; Kohno, K.; Ushio, S.; Taniguchi, M.; Fukuda, S. Tryptanthrin inhibits Th2 development, and IgE-mediated degranulation and IL-4 production by rat basophilic leukemia RBL-2H3 cells. J. Ethnopharmacol., 2011, 134(2), 450-459.
[http://dx.doi.org/10.1016/j.jep.2010.12.041] [PMID: 21216280]
[213]
Hwang, J.M.; Oh, T.; Kaneko, T.; Upton, A.M.; Franzblau, S.G.; Ma, Z.; Cho, S.N.; Kim, P. Design, synthesis, and structure-activity relationship studies of tryptanthrins as antitubercular agents. J. Nat. Prod., 2013, 76(3), 354-367.
[http://dx.doi.org/10.1021/np3007167] [PMID: 23360475]
[214]
Takei, Y.; Kunikata, T.; Aga, M.; Inoue, S.; Ushio, S.; Iwaki, K.; Ikeda, M.; Kurimoto, M. Tryptanthrin inhibits interferon-gamma production by Peyer’s patch lymphocytes derived from mice that had been orally administered staphylococcal enterotoxin. Biol. Pharm. Bull., 2003, 26(3), 365-367.
[http://dx.doi.org/10.1248/bpb.26.365] [PMID: 12612449]
[215]
Micallef, M.J.; Iwaki, K.; Ishihara, T.; Ushio, S.; Aga, M.; Kunikata, T.; Koya-Miyata, S.; Kimoto, T.; Ikeda, M.; Kurimoto, M. The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice. Int. Immunopharmacol., 2002, 2(4), 565-578.
[http://dx.doi.org/10.1016/S1567-5769(01)00206-5] [PMID: 11962735]
[216]
Scovill, J.; Blank, E.; Konnick, M.; Nenortas, E.; Shapiro, T. Antitrypanosomal activities of tryptanthrins. Antimicrob. Agents Chemother., 2002, 46(3), 882-883.
[http://dx.doi.org/10.1128/AAC.46.3.882-883.2002] [PMID: 11850279]
[217]
Kumar, A.; Tripathi, V.D.; Kumar, P. β-Cyclodextrin catalysed synthesis of tryptanthrin in water. Green Chem., 2011, 13, 51-54.
[http://dx.doi.org/10.1039/C0GC00523A]
[218]
El-Remaily, M.; Elhady, O.M. Cobalt(III)–porphyrin complex (CoTCPP) as an efficient and recyclable homogeneous catalyst for the synthesis of tryptanthrin in aqueous media. Tetrahedron Lett., 2016, 57, 435-437.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.052]
[219]
Moskovkina, T.V.; Kalinovskii, A.I.; Makhan’kov, V.V. Russ. Synthesis of tryptanthrin (couroupitine) derivatives by reaction of substituted isatins with phosphoryl chloride. J. Org. Chem., 2012, 48, 123-126.
[220]
Batanero, B.; Barba, F. Electrosynthesis of tryptanthrin. Tetrahedron Lett., 2006, 47, 8201-8203.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.130]
[221]
Liang, J.L.; Park, S.E.; Kwon, Y.; Jahng, Y. Synthesis of benzo-annulated tryptanthrins and their biological properties. Bioorg. Med. Chem., 2012, 20(16), 4962-4967.
[http://dx.doi.org/10.1016/j.bmc.2012.06.034] [PMID: 22819942]
[222]
Jia, F.C.; Zhou, Z.W.; Xu, C.; Wu, Y.D.; Wu, A.X. Divergent synthesis of quinazolin-4(3H)-ones and tryptanthrins enabled by a tert-butyl hydroperoxide/K3PO4-promoted oxidative cyclization of isatins at room temperature. Org. Lett., 2016, 18(12), 2942-2945.
[http://dx.doi.org/10.1021/acs.orglett.6b01291] [PMID: 27227518]
[223]
Mei, G.J.; Bian, C.Y.; Li, G.H.; Xu, S.L.; Zheng, W.Q.; Shi, F. Catalytic asymmetric construction of the tryptanthrin skeleton via an enantioselective decarboxylative [4 + 2] cyclization. Org. Lett., 2017, 19(12), 3219-3222.
[http://dx.doi.org/10.1021/acs.orglett.7b01336] [PMID: 28541051]
[224]
Moskovkina, T.V.; Denisenko, M.V.; Kalinovskii, A.I. Synthesis of substituted tryptanthrins via oxidation of isatin and its derivatives. Russ. J. Org. Chem., 2013, 49, 1740-1743.
[http://dx.doi.org/10.1134/S1070428013120051]
[225]
Abe, T.; Itoh, T.; Choshi, T.; Hibino, S.; Ishikura, M. One-pot synthesis of tryptanthrin by the Dakin oxidation of indole-3-carbaldehyde. Tetrahedron Lett., 2014, 55, 5268-5370.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.113]
[226]
Nelson, A.C.; Kalinowski, E.S.; Jacobson, T.L.; Grundt, P. Formation of tryptanthrin compounds upon Oxone-induced dimerization of indole-3-carbaldehyde. Tetrahedron Lett., 2013, 54, 6804-6806.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.124]
[227]
Patil, S.; Mane, A.; Dhongade-Desai, S. Ultrasound assisted synthesis of tryptanthrins catalyzed by zinc oxidenanoparticles. Chem. Sci. Rev. Lett., 2018, 7, 732-740.
[228]
Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2015, 32(10), 1389-1471.
[http://dx.doi.org/10.1039/C5NP00032G] [PMID: 26151910]
[229]
Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs, 2015, 13(8), 4814-4914.
[http://dx.doi.org/10.3390/md13084814] [PMID: 26287214]
[230]
Sharma, V.; Kumar, P.; Pathak, D. Biological importance of the indole nucleus in recent years: A comprehensive review. J. Het. Chem., 2010, 47, 491-502.
[http://dx.doi.org/10.1002/jhet.349]
[231]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[232]
Mei, G. J.; Shi, F. Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org. Biomol. Chem., 2017, 8, 3078-3082.
[233]
Kianmehr, E.; Kazemi, S.; Foroumadi, A. Palladium-catalyzed oxidative C–H bond coupling of indoles and benzaldehydes: A new approach to the synthesis of 3-benzoylindoles. Tetrahedron, 2014, 70, 349-354.
[http://dx.doi.org/10.1016/j.tet.2013.11.051]
[234]
Guo, S.; Li, Y.; Wang, Y.; Guo, X.; Meng, X.; Chen, B. Iron-catalyzed Cross Dehydrogenative Coupling (CDC) of indoles and benzylic C-H Bonds. Adv. Synth. Catal., 2015, 357, 950-954.
[http://dx.doi.org/10.1002/adsc.201400938]
[235]
Huo, C.; Dong, J.; Su, Y.; Tang, J.; Chen, F. Iron-catalyzed oxidative sp3 carbon-hydrogen bond functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones. Chem. Commun. (Camb.), 2016, 52(91), 13341-13344.
[http://dx.doi.org/10.1039/C6CC05885J] [PMID: 27709206]
[236]
Alagiri, K.; Kumara, G.S.R.; Prabhu, K.R. An oxidative cross-dehydrogenative-coupling reaction in water using molecular oxygen as the oxidant: vanadium catalyzed indolation of tetrahydroisoquinolines. Chem. Commun. (Camb.), 2011, 47(42), 11787-11789.
[http://dx.doi.org/10.1039/c1cc15050b] [PMID: 21956547]
[237]
Li, Z.; Li, C.J. CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp3 C-H and sp2 C-H bonds. J. Am. Chem. Soc., 2005, 127(19), 6968-6969.
[http://dx.doi.org/10.1021/ja0516054] [PMID: 15884937]
[238]
Kumar, A.; Rai, B.; Shukla, R.D. Zinc Oxide-NP catalyzed direct indolation of in situ generated bioactive tryptanthrin. Green Chem., 2018, 20, 822-826.
[http://dx.doi.org/10.1039/C7GC03479B]
[239]
Brown, M.; Johnson, M.G.; Li, A.R.; Liu, J.; Lively, S.E.; Medina, J.C.; Shen, W.; Mateo, S.; Wang, X.; Wang, Y. Boric acid catalyzed convenient synthesis of 2-amino- 3,5-dicarbonitrile-6-thio-pyridines in aqueous media. Tetrahedron Lett., 2008, 51, 1309-1312.
[240]
Kamano, Y.; Zhang, H.P.; Ichihara, Y.; Kizu, H.; Komiyama, K.; Pettit, G.R. Convolutamydine A, a novel bioactive hydroxyoxindole alkaloid from marine bryozoan Amathiaconvoluta. Tetrahedron Lett., 1995, 36, 2783-2784.
[http://dx.doi.org/10.1016/0040-4039(95)00395-S]
[241]
Rasmussen, H.B.; MacLeod, J.K. Total synthesis of donaxaridine. J. Nat. Prod., 1997, 60, 1152-1154.
[http://dx.doi.org/10.1021/np970246q]
[242]
Balk-Bindseil, W.; Helmke, E.; Weyland, H.; Laatsch, H. Marine bacteria, VIII. Maremycin A and B, new diketopiperazines from a marine Streptomyces sp. Liebigs Ann., 1995, 1995, 1291-1294.
[http://dx.doi.org/10.1002/jlac.1995199507171]
[243]
Monde, K.; Sasaki, K.; Shirata, A.; Tagusuki, M. Brassicanal C and two dioxindoles from cabbage. Phytochemistry, 1991, 30, 2915-2917.
[http://dx.doi.org/10.1016/S0031-9422(00)98224-4]
[244]
Suzuki, H.; Morita, H.; Shiro, M.; Kobayashi, M. Celogentin K, a new cyclic peptide from the seeds of Celosia argentea and X-ray structure of moroidin. Tetrahedron, 2004, 60, 2489-2495.
[http://dx.doi.org/10.1016/j.tet.2004.01.053]
[245]
Frechard, A.; Fabre, N.; Pean, C.S.; Montaut, S.; Fauvel, M.T.; Rollin, P.; Fouraste, I. Novel indole-type glucosinolates from woad (Isatistinctoria L.). Tetrahedron Lett., 2001, 42, 9015-9017.
[http://dx.doi.org/10.1016/S0040-4039(01)02015-9]
[246]
Kohno, J.; Koguchi, Y.; Nishio, M.; Nakao, K.; Kuroda, M.; Shimizu, R.; Ohnuki, T.; Komatsubara, S. Structures of TMC-95A-D: novel proteasome inhibitors from Apiospora montagnei sacc. TC 1093. J. Org. Chem., 2000, 65(4), 990-995.
[http://dx.doi.org/10.1021/jo991375+] [PMID: 10814045]
[247]
Berensa, U.; Brown, J.M.; Long, J.; Seike, R. Synthesis and resolution of 2,2′-bis-diphenylphosphino [3,3′]biindolyl; a new atropisomeric ligand for transition metal catalysis. Tetrahedron Asymmetry, 1996, 7, 285.
[http://dx.doi.org/10.1016/0957-4166(95)00447-5]
[248]
Shanthi, G.; Lakshmi, N.V.; Perumal, P.T. A simple and eco-friendly synthesis of 3-indolyl-3-hydroxy oxindoles and 11-indolyl-11H-indeno[1,2-b]quinoxalin-11-ols in aqueous media. ARKIVOC, 2009, 2009, 121-130.
[http://dx.doi.org/10.3998/ark.5550190.0010.a12]
[249]
Kumar, V.P.; Reddy, V.P.; Sridhar, R.; Srinivas, B.; Narender, M.; Rao, K.R. Supramolecular synthesis of 3-indolyl-3-hydroxy oxindoles under neutral conditions in water. J. Org. Chem., 2008, 73(4), 1646-1648.
[http://dx.doi.org/10.1021/jo702496s] [PMID: 18211093]
[250]
Kinthada, L.K.; Ghosh, S.; De, S.; Bhunia, S.; Dey, D.; Bisai, A. Acid-catalyzed reactions of 3-hydroxy-2-oxindoles with electron-rich substrates: synthesis of 2-oxindoles with all-carbon quaternary center. Org. Biomol. Chem., 2013, 11(40), 6984-6993.
[http://dx.doi.org/10.1039/c3ob41482e] [PMID: 24057328]
[251]
Haghighi, M.; Nikoofar, K.; Ahmadvand, Z. Growth of wurtzite ZnO nanorods using different capping agents: Characterization, morphology, and investigation the catalyticactivity in some oxindoles and indolyl organics. Nanochem Res., 2018, 3, 131-141.
[252]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[253]
Asif, M. Biological potentials of substituted tetrazole compounds. Pharm. Methods, 2014, 5, 1-8.
[254]
Bekhit, A.A.; El-Sayed, O.A.; Aboulmagd, E.; Park, J.Y. Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. Eur. J. Med. Chem., 2004, 39(3), 249-255.
[http://dx.doi.org/10.1016/j.ejmech.2003.12.005] [PMID: 15051173]
[255]
Mungra, D.C.; Patel, M.P.; Patel, R.G. Microwave-assisted synthesis of some new tetrazolo[1,5-a]quinoline-based benzimidazoles catalyzed by p-TsOH and investigation of their antimicrobialactivity. Med. Chem. Res., 2011, 20, 782-789.
[http://dx.doi.org/10.1007/s00044-010-9388-0]
[256]
Mungra, D.C.; Kathrotiya, H.G.; Ladani, N.K.; Patel, M.P.; Patel, R.G. Molecular iodine catalyzed synthesis of tetrazolo[1,5-a]quinoline based imidazoles as a new class of antimicrobial and antituberculosisagents. Chin. Chem. Lett., 2012, 23, 1367-1370.
[http://dx.doi.org/10.1016/j.cclet.2012.11.007]
[257]
Subhedar, D.D.; Shaikh, M.H.; Shingate, B.B.; Nawale, L.; Sarkar, D.; Khedkar, V.M. Novel tetrazoloquinoline-thiazolidinoneconjugatesas possible antitubercular agents: synthesis and moleculardocking. MedChemComm, 2016, 7, 1832-1848.
[http://dx.doi.org/10.1039/C6MD00278A]
[258]
Kategaonkar, A.H.; Labade, V.B.; Shinde, P.V.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. Synthesis and antimicrobial activityof tetrazolo[1,5-a]quinoline-4-carbonitrile derivatives. Monatsh. Chem., 2010, 141, 787-791.
[http://dx.doi.org/10.1007/s00706-010-0324-2]
[259]
Al-Marhabi, A.R.; Abbas, H-A.S.; Ammar, Y.A. Synthesis, characterization and biological evaluation of some quinoxalinederivatives: a promising and potent new class of antitumor andantimicrobial agents. Molecules, 2015, 20(11), 19805-19822.
[http://dx.doi.org/10.3390/molecules201119655] [PMID: 26540036]
[260]
Mukherjee, A.; Akhtar, M.S.; Sharma, V.L.; Seth, M.; Bhaduri, A.P.; Agnihotri, A.; Mehrotra, P.K.; Kamboj, V.P. Syntheses and bioevaluation of substituted dihydropyridines for pregnancy-interceptive activity in hamsters. J. Med. Chem., 1989, 32(10), 2297-2300.
[http://dx.doi.org/10.1021/jm00130a012] [PMID: 2795601]
[261]
Chikhalikar, S.; Bhawe, V.; Ghotekar, B.; Jachak, M.; Ghagare, M. Synthesis of pyridin-2(1H)-one derivatives via enamine cyclization. J. Org. Chem., 2011, 76(10), 3829-3836.
[http://dx.doi.org/10.1021/jo200197g] [PMID: 21480675]
[262]
Sun, J.; Xia, E.Y.; Wu, Q.; Yan, C.G. Synthesis of polysubstituted dihydropyridines by four-component reactions of aromatic aldehydes, malononitrile, arylamines, and acetylenedicarboxylate. Org. Lett., 2010, 12(16), 3678-3681.
[http://dx.doi.org/10.1021/ol101475b] [PMID: 20704414]
[263]
Rezvanian, A. An expedient synthesis strategy to the1,4-dihydropyridines and pyrido[1,2-a]quinoxalines: iodine catalyzedone-pot four-component domino reactions. Tetrahedron, 2016, 72, 6428-6435.
[http://dx.doi.org/10.1016/j.tet.2016.08.049]
[264]
Xiang, D.; Yang, Y.; Zhang, R.; Liang, Y.; Pan, W.; Huang, J.; Dong, D. Vilsmeier-Haack reactions of 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans toward the synthesis of highly substituted pyridin-2(1H)-ones. J. Org. Chem., 2007, 72(22), 8593-8596.
[http://dx.doi.org/10.1021/jo7015482] [PMID: 17915930]
[265]
Sharma, V.K.; Singh, S.K. Synthesis, utility and medicinalimportance of 1,2-000 1,4-dihydropyridines. RSC Advances, 2017, 7, 2682-2732.
[http://dx.doi.org/10.1039/C6RA24823C]
[266]
Ghoneim, A.A.; Assy, M.G. Synthesis of some new hydroquinoline and pyrimido[4,5-b] quinoline derivatives. Curr. Res. Chem., 2015, 7, 14-20.
[http://dx.doi.org/10.3923/crc.2015.14.20]
[267]
Aghaalizadeh, T.; Nasiri, F. Regioselective four-component synthesis of new tetrazolo[1,5-a]quinoline-based 2-amino-1,4-dihydropyridine and pyridin-2(1H)-one derivatives using nano-ZnO catalysis. Mol. Divers., 2018, 22(4), 907-917.
[http://dx.doi.org/10.1007/s11030-018-9844-1] [PMID: 29951884]
[268]
Herr, R.J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg. Med. Chem., 2002, 10(11), 3379-3393.
[http://dx.doi.org/10.1016/S0968-0896(02)00239-0] [PMID: 12213451]
[269]
Dolusić, E.; Larrieu, P.; Moineaux, L.; Stroobant, V.; Pilotte, L.; Colau, D.; Pochet, L.; Van den Eynde, B.; Masereel, B.; Wouters, J.; Frédérick, R. Tryptophan 2,3-dioxygenase (TDO) inhibitors. 3-(2-(pyridyl)ethenyl)indoles as potential anticancer immunomodulators. J. Med. Chem., 2011, 54(15), 5320-5334.
[http://dx.doi.org/10.1021/jm2006782] [PMID: 21726069]
[270]
Himo, F.; Demko, Z.P.; Noodleman, L.; Sharpless, K.B. Mechanisms of tetrazole formation by addition of azide to nitriles. J. Am. Chem. Soc., 2002, 124(41), 12210-12216.
[http://dx.doi.org/10.1021/ja0206644] [PMID: 12371861]
[271]
Łodyga-Chruścińska, E.; Sanna, D.; Micera, G.; Chruściński, L.; Olejnik, J.; Nachman, R.J.; Zabrocki, J. Chelating ability of proctolin tetrazole analogue. Acta Biochim. Pol., 2006, 53(1), 65-72.
[http://dx.doi.org/10.18388/abp.2006_3362] [PMID: 16496037]
[272]
Beusen, D.D.; Zabrocki, J.; Slomczynska, U.; Head, R.D.; Kao, J.L.F.; Marshall, G.R. Conformational mimicry: synthesis and solution conformation of a cyclic somatostatin hexapeptide containing a tetrazole cis amide bond surrogate. Biopolymers, 1995, 36(2), 181-200.
[http://dx.doi.org/10.1002/bip.360360207] [PMID: 7492745]
[273]
Knudsen, K.R.; Mitchell, C.E.T.; Ley, S.V. Asymmetric organocatalytic conjugate addition of malonates to enones using a proline tetrazole catalyst. Chem. Commun. (Camb.), 2006, 1(1), 66-68.
[http://dx.doi.org/10.1039/B514636D] [PMID: 16353094]
[274]
Sikdar, S.K.; Howell, S.G. On Developing Cleaner Organic Unit Processes. J. Clean. Prod., 1998, 6, 253-259.
[http://dx.doi.org/10.1016/S0959-6526(98)00026-2]
[275]
Butler, R.N.; Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V., Eds.; Comprehensive Heterocyclic Chemistry; Pergamon: Oxford, UK, 1996, p. 4.
[276]
Modarresi-Alam, A.R.; Khamooshi, F.; Rostamizadeh, M.; Kieykha, H.; Nasrollahzadeh, M.; Bijanzadeh, H.R.; Kleinpeter, E. Dynamic 1H NMR Spectroscopic Study of the Restricted S-N Rotation in Aryl-N-(Arylsulfonyl)-N (Triphenylphosphoranylidene). Imidocarbamates. J. Mol. Struct., 2007, 841, 61-66.
[http://dx.doi.org/10.1016/j.molstruc.2006.11.058]
[277]
Yizhong, Z.; Yiming, R.; Chun, C. One-Pot synthesis of 5-substituted 1H-tetrazoles from arylbromides with potassium Hexakis(Cyano-kC)Ferrate(4-) (K4[Fe[CN)6]) as cyanide sources. Helv. Chim. Acta, 2009, 92, 171-175.
[http://dx.doi.org/10.1002/hlca.200800254]
[278]
Rostamizadeh, S.; Ghaieni, H.; Aryan, R.; Amani, A. zinc chloride catalyzed synthesis of 5-substituted 1h-tetrazoles under solvent free condition. Chin. Chem. Lett., 2009, 20, 1311-1314.
[http://dx.doi.org/10.1016/j.cclet.2009.06.020]
[279]
Kantam, M.L.; Shiva Kumar, K.B.; Phani Raja, K.J. An efficient synthesis of 5-substituted1h-tetrazoles using Zn/Al hydrotalcite catalyst. J. Mol. Catal. Chem., 2006, 247, 186-188.
[http://dx.doi.org/10.1016/j.molcata.2005.11.046]
[280]
Kantam, M.L.; Balasubramanyam, V.; Shiva Kumar, K.B. Zinc hydroxyapatite-catalyzed efficient synthesis of 5-substituted 1H-tetrazoles. Synth. Commun., 2006, 36, 1809-1814.
[http://dx.doi.org/10.1080/00397910600619630]
[281]
Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S. FeCl3 SiO2 as a reusable heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles via. [2 þ 3]. Cycloaddition of Nitriles and Sodium Azide. Tetrahedron Lett., 2009, 50, 4435-4438.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.048]
[282]
Venkateshwarlu, G.; Premalatha, A.; Rajanna, K.C.; Saiprakash, P.K. Cadmium chloride as an efficient catalyst for neat synthesis of 5-substituted 1H-tetrazoles. Synth. Commun., 2009, 39, 4479-4485.
[http://dx.doi.org/10.1080/00397910902917682]
[283]
Mani, P.; Singh, A.K.; Awasthi, S.K. AgNO3 catalyzed synthesis of 5-Substituted-1htetrazolevia. [3 + 2] Cycloaddition of Nitriles and Sodium Azide. Tetrahedron Lett., 2014, 55, 1879-1882.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.117]
[284]
Bosch, L.; Vilarrasa, J. Cu2(OTf)2-catalyzed and microwave-controlled preparation of tetrazoles from nitriles and organic azides under mild, safe conditions. Angew. Chem. Int. Ed. Engl., 2007, 46(21), 3926-3930.
[http://dx.doi.org/10.1002/anie.200605095] [PMID: 17427165]
[285]
Dehghani, F.; Sardarian, A.R.; Esmaeilpour, M. Salen complex of Cu (II) supported on superparamagnetic Fe3O4 @SiO2 nanoparticles: An efficient and recyclable catalyst for the synthesis of 1- and 5-substituted 1H-tetrazole. J. Organomet. Chem., 2013, 743, 87-96.
[http://dx.doi.org/10.1016/j.jorganchem.2013.06.019]
[286]
Clarina, T.; Rama, V. [3 + 2] Cycloaddition promoted by zinc oxidenanoparticles anchored on reduced grapheneoxide using green solvent. Synth. Commun., 2018, 48(2), 175-187.
[http://dx.doi.org/10.1080/00397911.2017.1393086]
[287]
Hong, E.Q.; Chen, X. RuCl3·3H2O catalyzed reactions: facile synthesis of bis(indolyl)methanes under mild conditions. Molecules, 2011, 16, 3855-3868.
[http://dx.doi.org/10.3390/molecules16053855] [PMID: 21555975]
[288]
Carbone, A.; Spanò, V.; Parrino, B.; Ciancimino, C.; Orazio, A.; Favi, G. A facile synthesis of deaza-analogues of the bisindole marine alkaloid topsentin. Molecules, 2013, 18, 2518-2527.
[http://dx.doi.org/10.3390/molecules18032518] [PMID: 23442928]
[289]
Lounasmaa, M.; Tolvanen, A. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2000, 17(2), 175-191.
[http://dx.doi.org/10.1039/a809402k] [PMID: 10821112]
[290]
Faulkner, D.J. Marine natural products. Nat. Prod. Rep., 2001, 18(1), 1-49.
[http://dx.doi.org/10.1039/b006897g] [PMID: 11245399]
[291]
Mujumdar, R.B.; Ernst, L.A.; Mujumdar, S.R.; Lewis, C.J.; Waggoner, A.S. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug. Chem., 1993, 4(2), 105-111.
[http://dx.doi.org/10.1021/bc00020a001] [PMID: 7873641]
[292]
Dave, V.; Warnhoff, W.E. New reactions of 2-substituted indoles. Can. J. Chem., 1976, 54, 1020-1028.
[http://dx.doi.org/10.1139/v76-147]
[293]
Hasaninejad, A.; Shekouhy, M.; Zare, A. PEG-SO3H as a new, highly efficient and homogeneous polymeric catalyst for the synthesis of bis(indolyl)methanes and 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1Hpyrazol-5-ol) in water. JICS, 2011, 8, 411-423.
[http://dx.doi.org/10.1007/BF03249075]
[294]
Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R.; Crooks, P.A. An eco-friendly improved protocol for the synthesis of bis(3-indolyl)methanes using poly(4-vinylpyridinium)hydrogen sulfate as efficient, heterogeneous, and recyclable solid acid catalyst. ISRN Org. Chem., 2013, 2013, 616932
[http://dx.doi.org/10.1155/2013/616932] [PMID: 24052864]
[295]
Pal, R.; Das Gupta, A.; Mallik, A.K. Facile iodine-catalyzed michael addition of indoles to α,α′-Bis(arylmethylene) cyclopentanones: An efficient synthesis of E-2-(3-indolylphenylmethyl)-5-phenylmethylenecyclopentanones. ISRN Org. Chem., 2012, 2012, 674629
[http://dx.doi.org/10.5402/2012/674629] [PMID: 24052849]
[296]
Madana, Y.; Guptab, R. An Efficient approach for the synthesis of 1,1-bis(2-phenyl-3-indolyl)ethylene using ZnO nanocatalyst. J. Heterocycl. Chem., 2018, 55, 402-407.
[http://dx.doi.org/10.1002/jhet.3053]
[297]
Dieter, R.K.; Yu, H. An efficient approach for the synthesis of 1,1-bis(2-phenyl-3-indolyl)ethylene Using ZnO Nanocatalyst. J. Heterocycl. Chem., 2000, 55, 402-407.
[298]
Wang, S.; Zhu, X.; Chai, Z.; Wang, S. Synthesis of polysubstituted pyrroles via [3 + 2]-annulation of aziridines and β-nitroalkenes under aerobic conditions. Org. Biomol. Chem., 2014, 12(8), 1351-1356.
[http://dx.doi.org/10.1039/C3OB42324G] [PMID: 24435592]
[299]
Soltani, M.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Convenient synthesis of polysubstituted pyrroles and symmetrical and unsymmetrical bis-pyrroles catalyzed by H3PW12O40. C. R. Chim., 2016, 19, 381-389.
[http://dx.doi.org/10.1016/j.crci.2015.11.006]
[300]
Nagarapu, L.; Mallepalli, R.; Yeramanchi, L.; Bantu, R. Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for one-pot synthesis of polysubstituted pyrroles under catalyst-free conditions. Tetrahedron Lett., 2011, 52, 3401-3404.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.095]
[301]
Clark, R.D.; Repke, D.B. The Leimgruber-batcho indole synthesis. Heterocycles, 1984, 22, 195-221.
[http://dx.doi.org/10.3987/R-1984-01-0195]
[302]
Batcho, A.; Leimgruber, W. Indoles from 2-methylnitrobenzenes by condensation with formamide acetals followed by reduction: 4-benzyloxyindole. Org. Synth., 1985, 63, 214-220.
[303]
Batcho, A.D.; Leimgruber, W. Atropaldehyde. Org. Synth., 1990, 7, 34-41.
[304]
Madelung, W. ÜberUmlagerung von Phenol‐allyläthern in C‐Allyl‐phenole. Dtsch. Chem. Ges., 1912, 45, 1128-1134.
[305]
Ito, Y.; Kobayashi, K.; Saegusa, T. An efficient synthesis of indole. J. Am. Chem. Soc., 1977, 99, 3532-3534.
[306]
He, F.; Bo, Y.; Altom, J.D.; Corey, E.J. Enantioselective total synthesis of aspidophytine. J. Am. Chem. Soc., 1999, 121, 6771-6772.
[307]
Llabres-Campaner, P.J.; Ballesteros-Garrido, R.; Ballesteros, R.; Abarca, B. Straight access to indoles from anilines and ethylene glycol by heterogeneous acceptorless dehydrogenative condensation. J. Org. Chem., 2018, 83, 521-526.
[308]
Shi, Y.; Zhou, C-H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(3), 956-960.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.059] [PMID: 21215620]
[309]
Charles, W. Francis, Warfarin: An historical perspective. Heamatology, 2008, 1, 251.
[310]
Beinema, M.; Brouwers, J.R.; Schalekamp, T.; Wilffert, B. Pharmacogenetic differences between warfarin, acenocoumarol and phenprocoumon. Thromb. Haemost., 2008, 100(6), 1052-1057.
[PMID: 19132230]
[311]
Yamamoto, Y.; Kurazono, M. A new class of anti-MRSA and anti-VRE agents: preparation and antibacterial activities of indole-containing compounds. Bioorg. Med. Chem. Lett., 2007, 17(6), 1626-1628.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.081] [PMID: 17254785]
[312]
Wong, T.C.; Sultana, C.M.; Vosburg, D.A.A. Green, enantioselective synthesis of warfarin for the undergraduate organic laboratory. J. Chem. Educ., 2010, 87, 194-195.
[http://dx.doi.org/10.1021/ed800040m]
[313]
Rogozińska-Szymczak, M.; Mlynarski, J. Asymmetric synthesis of warfarin and its analogues on water. Tetrahedron Asymmetry, 2014, 25, 10-11.
[http://dx.doi.org/10.1016/j.tetasy.2014.04.008]
[314]
Rueping, M.; Nachtsheim, B.J.; Sugiono, E. Direct catalytic benzylation of hydroxycoumarin - efficient synthesis of Warfarin derivatives and analogues. Synlett, 2010, 10, 1549-1553.
[http://dx.doi.org/10.1055/s-0029-1219936]
[315]
Jafari, F.; Kodabakhshib, S.; Shiraz, S.G. Zinc oxide nanorods: A new application as a powerful catalyst for the green one-pot synthesisof new warfarin analogs. RSC Advances, 2014, 4, 48095-48100.
[http://dx.doi.org/10.1039/C4RA06669C]
[316]
Anaraki-Ardakani, H.; Charooseai, A. An efficient synthesis of functionalized 3-(α-amidobenzyl)-4-hydroxycoumarin derivatives by ZnO nanoparticles promoted condensation reaction between aromatic aldehyde, 4-hydroxycoumarin, and amides. Orient. J. Chem., 2015, 31, 1455-1460.
[http://dx.doi.org/10.13005/ojc/310324]
[317]
Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.; Miri, R.; Shafiee, A. 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur. J. Med. Chem., 2013, 59, 15-22.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.044] [PMID: 23202485]
[318]
Mohr, S.J.; Chirigos, M.A.; Fuhrman, F.S.; Pryor, J.W. Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor. Cancer Res., 1975, 35(12), 3750-3754.
[PMID: 1192431]
[319]
Okasha, R.M.; Alblewi, F.F.; Afifi, T.H.; Naqvi, A.; Fouda, A.M.; Al-Dies, A.M. and; El-Agrody, A.M. Design of new benzo[h]chromene derivatives: Antitumor activities and structure-activity relationships of the 2,3-positions and fused rings at the 2,3-Positions. Molecules, 2017, 3, 479.
[http://dx.doi.org/10.3390/molecules22030479]
[320]
Brunavs, M.; Dell, C.P.; Gallagher, P.T.; Owton, W.M.; Smith, C.W. Eur. Pat. Appl. EP., 1993, 557075, A1-A19930825.
[321]
Qiang, D.Z.; Shi, J.B.; Song, B.A.; Liu, X.H. Novel 2H-chromen derivatives: design, synthesis and anticancer activity. RSC Advances, 2014, 4, 5607-5617.
[http://dx.doi.org/10.1039/c3ra47252c]
[322]
Görlitzer, K.; Dehne, A.; Engler, E. [2-(1H-Tetrazol-5-yl)-4,5-dihydroindeno[1,2-b]pyran-4-one]. Arch. Pharm. (Weinheim), 1983, 316(3), 264-270.
[http://dx.doi.org/10.1002/ardp.19833160315] [PMID: 6860092]
[323]
El-Agrody, A.M.; El-Hakium, M.H.; Abd El-Latif, M.S.; Fekry, A.H.; El-Sayed, E.S.M. El-Gareab, K. A. Synthesis of pyrano [2,3-d]pyrimidine and pyrano[3,2-e] [1,2,4]triazolo[2,3-c]pyrimidine derivatives with promising antibacterial activity. Acta Pharm., 2000, 50, 111-120.
[324]
Elinson, M. N.; Dorofeev, A. S.; Miloserdov, F. M.; Ilovaisky, A. I.; Feducovich, S. K.; Belyakov, P. A.; Nikishina, G. I.; Dorofeev, A. S.; Zelinsky, N. D. Electrochemically Induced Three-Component Synthesis of Chromenes. Synfacts, 2008, 6, 0568-0568.
[325]
Kumaravel, K.; Vasuki, G. Four-component catalyst-free reaction in water: Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives. Green Chem., 2009, 11, 1945-1947.
[http://dx.doi.org/10.1039/b913838b]
[326]
Vereshchagin, A.N.; Elinson, M.N.; Ryzhkov, F.V.; Nasybullin, R.F.; Bobrovsky, S.I.; Goloveshkin, A.S.; Egorov, M.P. Multicomponent assembling of salicylaldehydes, malononitrile, and 4-hydroxy-6-methyl-2H-pyran-2-one: A fast and efficient approach to medicinally relevant 2-amino-4H-chromene scaffold. C. R. Chim., 2015, 18, 1344-1349.
[http://dx.doi.org/10.1016/j.crci.2015.02.005]
[327]
Rao, L. Chandrasekhara.; Kumar, N. S.; Bheeram, V. R.; Hemambika, S.; Mukkamala, S. B. An Efficient ZnO-Nanoparticle-Catalyzed Regio- and Chemoselective Synthesis of Novel Functionalized4H-Chromenes in Aqueous Medium. ChemistrySelect, 2018, 3, 7485-7489.
[http://dx.doi.org/10.1002/slct.201800503]
[328]
Temple, C., Jr; Rener, G.A.; Waud, W.R.; Noker, P.E. Antimitotic agents: structure-activity studies with some pyridine derivatives. J. Med. Chem., 1992, 35(20), 3686-3690.
[http://dx.doi.org/10.1021/jm00098a014] [PMID: 1433180]
[329]
Wang, X.F.; Ohkoshi, E.; Wang, S.B.; Hamel, E.; Bastow, K.F.; Morris-Natschke, S.L.; Lee, K.H.; Xie, L. Synthesis and biological evaluation of N-alkyl-N-(4-methoxyphenyl)pyridin-2-amines as a new class of tubulin polymerization inhibitors. Bioorg. Med. Chem., 2013, 21(3), 632-642.
[http://dx.doi.org/10.1016/j.bmc.2012.11.047] [PMID: 23274123]
[330]
Manna, F.; Chimenti, F.; Bolasco, A.; Bizzarri, B.; Filippelli, W.; Filippelli, A.; Gagliardi, L. Anti-inflammatory, analgesic and antipyretic 4,6-disubstituted 3-cyano-2-aminopyridines. Eur. J. Med. Chem., 1999, 34, 245-254.
[http://dx.doi.org/10.1016/S0223-5234(99)80057-9]
[331]
Siddiqui, N.; Ahsan, W.; Alam, M.S.; Ali, R.; Srivastava, K. Design, synthesis and anticonvulsant evaluation of pyridinyl-pyrrolidones: A pharmacophore hybrid approach. Arch. Pharm. Chem. Life Sci., 2012, 345, 185-194.
[http://dx.doi.org/10.1002/ardp.201100140] [PMID: 21997797]
[332]
Pagadala, R.; Maddila, S.; Moodley, V.V.; van Zyl, W.E.; Jonnalagadda, S.B. An efficient method for the multicomponent synthesis of multisubstituted pyridines, a rapid procedure using Au/MgO as the catalys. Tetrahedron Lett., 2014, 55, 4006-4010.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.089]
[333]
Xin, X.; Wang, Y.; Kumar, S.; Liu, X.; Lin, Y.; Dong, D. Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org. Biomol. Chem., 2010, 8(13), 3078-3082.
[http://dx.doi.org/10.1039/c001117g] [PMID: 20480101]
[334]
Reddy, D.N.K.; Chandrasekhar, K.B.; Ganesh, Y.S.S.; Kumar, B.S.; Adepu, R.; Pal, M. SnCl2•2H2O as a precatalyst in MCR: Synthesis of pyridine derivatives via a 4-component reaction in water. Tetrahedron Lett., 2015, 56, 4586-4589.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.008]
[335]
Reddy, D.N.K.; Chandrasekhar, K.B.; Ganesh, Y.S.S.; Reddy, G.R.; Kumar, J.P.; Kapavarapu, R.; Pal, M. FeF3-catalyzed MCR in PEG-400: Ultrasound assisted synthesis of N-substituted 2-aminopyridines. RSC Advances, 2016, 6, 67212-67217.
[http://dx.doi.org/10.1039/C6RA14228A]
[336]
Singh, K.N.; Singh, S.K. Microwave-assisted, one-pot multicomponent synthesis of highly substituted pyridines using KF/alumina. ARKIVOC, 2009, XIII, 153-160.
[337]
Mamgain, R.; Singh, R.; Rawat, D.S. DBU-catalyzed three-component one-pot synthesis of highly functionalized pyridines in aqueous ethanol. J. Heterocycl. Chem., 2009, 46, 69-73.
[http://dx.doi.org/10.1002/jhet.32]
[338]
Guo, K.; Thompson, M.J.; Chen, B. Exploring catalyst and solvent effects in the multicomponent synthesis of pyridine-3,5-dicarbonitriles. J. Org. Chem., 2009, 74(18), 6999-7006.
[http://dx.doi.org/10.1021/jo901232b] [PMID: 19678630]
[339]
Shinde, P.V.; Sonar, S.S.; Shingate, B.B.; Shingare, M.S. Boric acid catalyzed convenient synthesis of 2-amino- 3,5-dicarbonitrile-6-thio-pyridines in aqueous media. Tetrahedron Lett., 2010, 51, 1309-1312.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.146]
[340]
Kankala, S.; Pagadala, R.; Maddila, S.; Vasam, C.S.; Jonnalagadda, S.B. Silver(I)–N-heterocyclic carbene catalyzed multicomponent reactions: A facile synthesis of multi substituted pyridines. RSC Advances, 2015, 5, 105446-105452.
[http://dx.doi.org/10.1039/C5RA16582B]
[341]
Patil, K.; Kumbhar, D.; Patil, A.; Karhale, S.; Helavi, V. Multicomponent, one-pot synthesis of highly substituted pyridines with zinc oxide naniparticles as catalyst. Indian J. Heterocycl. Chem., 2017, 27, 157-164.
[342]
Arshadi, S.; Vessally, E.; Edjlali, L.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E. N-Propargylamines: versatile building blocks in the construction of thiazole cores. Beilstein J. Org. Chem., 2017, 13, 625-638.
[http://dx.doi.org/10.3762/bjoc.13.61] [PMID: 28487756]
[343]
Zani, L.; Bolm, C. Direct addition of alkynes to imines and related C=N electrophiles: A convenient access to propargylamines. Chem. Commun. (Camb.), 2006, (41), 4263-4275.
[http://dx.doi.org/10.1039/B607986P] [PMID: 17047838]
[344]
Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne, G.D.; Clardy, J. Dynemicin A, a novel antibiotic with the anthraquinone and 1,5-diyn-3-ene subunit. J. Antibiot. (Tokyo), 1989, 42(9), 1449-1452.
[http://dx.doi.org/10.7164/antibiotics.42.1449] [PMID: 2793600]
[345]
Hu, T.S.; Tannert, R.; Arndt, H.D.; Waldmann, H. Solid-phase based synthesis of jasplakinolide analogs by intramolecular azide-alkyne cycloadditions. Chem. Commun. (Camb.), 2007, (38), 3942-3944.
[http://dx.doi.org/10.1039/b710650e] [PMID: 17896040]
[346]
Jeon, H.B.; Lee, Y.; Qiao, C.; Huang, H.; Sayre, L.M. Inhibition of bovine plasma amine oxidase by 1,4-diamino-2-butenes and -2-butynes. Bioorg. Med. Chem., 2003, 11(21), 4631-4641.
[http://dx.doi.org/10.1016/S0968-0896(03)00521-2] [PMID: 14527560]
[347]
Wright, J.L.; Gregory, T.F.; Kesten, S.R.; Boxer, P.A.; Serpa, K.A.; Meltzer, L.T.; Wise, L.D.; Espitia, S.A.; Konkoy, C.S.; Whittemore, E.R.; Woodward, R.M. Subtype-selective N-methyl-D-aspartate receptor antagonists: synthesis and biological evaluation of 1-(heteroarylalkynyl)-4-benzylpiperidines. J. Med. Chem., 2000, 43(18), 3408-3419.
[http://dx.doi.org/10.1021/jm000023o] [PMID: 10978188]
[348]
Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev., 2009, 38(7), 1999-2011.
[http://dx.doi.org/10.1039/b714786b] [PMID: 19551179]
[349]
Fischer, C.; Carreira, E.M. Direct addition of TMS-acetylene to aldimines catalyzed by a simple, commercially available Ir(I) complex. Org. Lett., 2001, 3(26), 4319-4321.
[http://dx.doi.org/10.1021/ol017022q] [PMID: 11784207]
[350]
Shi, L.; Tu, Y.Q.; Wang, M.; Zhang, F.M.; Fan, C.A. Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C-H activation catalyzed by copper in water. Org. Lett., 2004, 6(6), 1001-1003.
[http://dx.doi.org/10.1021/ol049936t] [PMID: 15012085]
[351]
Li, P.; Wang, L.; Zhang, Y.; Wang, M. Highly efficient three-component (aldehyde–alkyne–amine) coupling reactions catalyzed by a reusable PS-supported NHC-Ag(I) under solvent-free reaction condition. Tetrahedron Lett., 2008, 49, 6650-6654.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.026]
[352]
Zhou, Y.; He, T.; Wang, Z. Nanoparticles of silver oxide immobilized on different templates: Highly efficient catalyst for three-component coupling of aldehyde-amine-alkyne. ARKIVOC, 2008, xiii, 80-90.
[353]
Shore, G.; Yoo, W.J.; Li, C.J.; Organ, M.G. Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). Chemistry, 2010, 16(1), 126-133.
[http://dx.doi.org/10.1002/chem.200902396] [PMID: 19950339]
[354]
Kidwai, M.; Bansal, V.; Mishra, N.K.; Kumar, A.; Mozumdar, S. Copper-Nanoparticle-Catalyzed A3 Coupling via C-H Activation. Synlett, 2007, 10, 1581-1584.
[http://dx.doi.org/10.1055/s-2007-980365]
[355]
Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem., 2007, 9, 742-745.
[http://dx.doi.org/10.1039/b702287e]
[356]
González-Béjar, M.; Peters, K.; Hallett-Tapley, G.L.; Grenier, M.; Scaiano, J.C. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem. Commun. (Camb.), 2013, 49(17), 1732-1734.
[http://dx.doi.org/10.1039/c3cc38287g] [PMID: 23340772]
[357]
Havrylyuk, D.; Kovach, N.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates. Arch. Pharm. (Weinheim), 2011, 344(8), 514-522.
[http://dx.doi.org/10.1002/ardp.201100055] [PMID: 21681810]
[358]
Yeung, B.K.S.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E.K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E.A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T.T.; Keller, T.H. Spirotetrahydro β-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem., 2010, 53(14), 5155-5164.
[http://dx.doi.org/10.1021/jm100410f] [PMID: 20568778]
[359]
Wang, G.; Peng, Z.; He, D.; Yan, C.; Liu, W. Inventors; Jishou University, Peop. Rep. China. Assignee. Coumarin-isatin type compound useful in treatment of diabetes mellitus and its preparation patent CN105237521A. 2016.
[360]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin beta-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[361]
Paira, P.; Hazra, A.; Kumar, S.; Paira, R.; Sahu, K.B.; Naskar, S.; Saha, P.; Mondal, S.; Maity, A.; Banerjee, S.; Mondal, N.B. Efficient synthesis of 3,3-diheteroaromatic oxindole analogues and their in vitro evaluation for spermicidal potential. Bioorg. Med. Chem. Lett., 2009, 19(16), 4786-4789.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.049] [PMID: 19564109]
[362]
Campos, R.; Kandelbauer, A.; Robra, K.H.; Cavaco-Paulo, A.; Gübitz, G.M. Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J. Biotechnol., 2001, 89(2-3), 131-139.
[http://dx.doi.org/10.1016/S0168-1656(01)00303-0] [PMID: 11500206]
[363]
Panda, J.; Patro, V.J.; Sahoo, B.M.; Mishra, J. Green chemistry approach for efficient synthesis of schiff bases of isatin derivatives and evaluation of their antibacterial activities. J. Nanopart., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/549502]
[364]
Chinnasamy, R.P.; Sundararajan, R.; Govindaraj, S. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res., 2010, 1(3), 342-347.
[http://dx.doi.org/10.4103/0110-5558.72428] [PMID: 22247869]
[365]
Al-kadhimi, Ahmed, A. H.; Al-azzawi, Nuhad K. E.; Khalaf, A.I.. Facile synthesis of Schiff and Mannich bases of isatin derivatives. J. Chem. Biol. Phys. Sci., 2015, 5, 2338-2349.
[366]
Taher, A.T.; Khalil, N.A.; Ahmed, E.M. Synthesis of novel isatin-thiazoline and isatin-benzimidazole conjugates as anti-breast cancer agents. Arch. Pharm. Res., 2011, 34(10), 1615-1621.
[http://dx.doi.org/10.1007/s12272-011-1005-3] [PMID: 22076761]
[367]
Kothandapani, J.; Ganesan, A.; Mani, G.K. Kulandaisamy, A. J.; Rayappan, J. B. B.; Ganesan, S. S. Zinc oxide surface: a versatile nanoplatform for solvent-free synthesis of diverse isatin derivatives. Tetrahedron Lett., 2016, 57, 3472-3475.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.094]
[368]
Sun, J.H.; Teleha, C.A.; Yan, J.S.; Rodgers, J.D.; Nugiel, D.A. Chemistry and biology of indoles and indazoles: A mini-review. J. Org. Chem., 1997, 62, 5627-5629.
[http://dx.doi.org/10.1021/jo970375b]
[369]
Rodgers, J.D.; Johnson, B.L.; Wang, H.; Greenberg, R.A.; Erickson-Viitanen, S.; Klabe, R.M.; Cordova, B.C.; Rayner, M.M.; Lam, G.N.C.H. Potent cyclic urea HIV protease inhibitors with benzofused heterocycles as P2/P2′ groups. Bioorg. Med. Chem. Lett., 1996, 6, 2919-2924.
[http://dx.doi.org/10.1016/S0960-894X(96)00531-8]
[370]
Schreiber, V.; Dantzer, F.; Ame, J.C.; de Murcia, G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol., 2006, 7(7), 517-528.
[http://dx.doi.org/10.1038/nrm1963] [PMID: 16829982]
[371]
Scarpelli, R. Toxicity of pesticides. Pesticide News, 2000, 48, 20.
[372]
Kiriazis, A.; Rüffer, T.; Jäntti, S.; Lang, H.; Yli-Kauhaluoma, J. Stereoselective aza Diels-Alder reaction on solid phase: a facile synthesis of hexahydrocinnoline derivatives. J. Comb. Chem., 2007, 9(2), 263-266.
[http://dx.doi.org/10.1021/cc060125l] [PMID: 17348732]
[373]
Boatman, P.D.; Urban, J.; Nguyen, M.; Qabar, M.; Kahn, M. High-throughput synthesis and optimization of thrombin inhibitors via urazole alpha-addition and Michael addition. Bioorg. Med. Chem. Lett., 2003, 13(8), 1445-1449.
[http://dx.doi.org/10.1016/S0960-894X(03)00155-0] [PMID: 12668009]
[374]
Bazgir, A.; Seyyedhamzeh, M.; Yasaei, Z.; Mirzaei, P. A novel three-component method for the synthesis of triazolo[1,2-a]indazole-triones. Tetrahedron Lett., 2007, 48, 8790-8794.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.084]
[375]
Hasaninejad, A.; Zare, A.; Shekouhy, M. Highly efficient synthesis of triazolo[1,2-a]indazole-triones and novel spiro triazolo[1,2-a]indazole-tetraones under solvent-free conditions. Tetrahedron, 2011, 67, 390-400.
[http://dx.doi.org/10.1016/j.tet.2010.11.029]
[376]
Kidwai, M.; Chauhan, R. Sulfamic acid: an efficient, cost-effective and recyclable catalyst for the synthesis of triazole[1,2-a]indazole-trionederivatives. RSC Advances, 2012, 2, 7660-7765.
[http://dx.doi.org/10.1039/c2ra20662e]
[377]
Tavakoli, H.R.; Moosavi, S.M.; Bazgir, A. ZrOCl2.8H2O as an efficient catalyst for the three-component synthesis of triazoloindazoles and indazolophthalazine. J. Korean Chem. Soc., 2013, 57, 472-475.
[http://dx.doi.org/10.5012/jkcs.2013.57.4.472]
[378]
Sadeghzadeh, S.M. Quinuclidine stabilized on FeNi3 nanoparticles as catalysts for efficient, green, and one-pot synthesis of triazolo[1,2-a]indazole-triones. ChemPlusChem, 2014, 79(2), 278-283.
[http://dx.doi.org/10.1002/cplu.201300341] [PMID: 31986577]
[379]
Chandam, D.R.; Mulik, A.G.; Patil, P.P.; Jagdale, S.D. Patil. D. R.; Deshmukh,M. B. (±)-Camphor-10-sulfonic acid catalyzed atom efficient and green synthesis of triazolo[1,2-a]indazole-triones and spiro triazolo[1,2-a]indazole-tetraones. Res. Chem. Intermed., 2015, 41, 761-771.
[http://dx.doi.org/10.1007/s11164-013-1226-9]
[380]
Hassankhani, A.; Mosaddegh, E.; Ebrahimipour, S.Y. Tungstosilicc acid as an efficientcatalyst for the one-pot multicomponent synthesis of triazolo[1,2-a]indazole-1,3,8-trionederivatives under solvent free conditions. Arab. J. Chem., 2016, 9, 936-939.
[http://dx.doi.org/10.1016/j.arabjc.2011.10.003]
[381]
Sadeghzadeh, S.M. A multicomponent reaction on a ‘free’ KCC-1 catalyst at room temperature under solvent free conditions by visible light. RSC Advances, 2016, 6, 54236-54240.
[http://dx.doi.org/10.1039/C6RA11480F]
[382]
Verma, D.; Sharma, V.; Okram, G.S.; Jain, S. Ultrasound-assisted high-yield multicomponentsynthesis of triazolo[1,2-a]indazole-triones using silica-coated ZnO nanoparticles as aheterogeneous catalyst. Green Chem., 2017, 19, 5885-5899.
[http://dx.doi.org/10.1039/C7GC03279J]
[383]
Pawar, S.G.; Patil, S.L.; Chougule, M.A.; Sen Raut, B.T. Shashwati.;Patil, V.B. Camphor sulfonic acid doped polyaniline-titanium dioxide nanocomposite synthesis, structural, morphological, and electrical properties. Int. J. Polym. Mater., 2011, 60, 979-987.
[http://dx.doi.org/10.1080/00914037.2011.553848]
[384]
Pan, W.; He, X.; Chen, Y. Preparation and characterization of poly(vinyl alcohol)- antimony doped tin oxide nanocomposites. Int. J. Polym. Mater., 2011, 60, 223-232.
[385]
Ganesan, R.; Larny, M.J.; Durga, L.D.; Paramasivam, T.; Boukos, N.; Vengidusamy, N.; Arumainathan, S. Polyindole-CuO composite polymer electrolyte containing LiClO4 for lithium ion polymerbatteries. Polym. Bull., 2012, 68, 181-196.
[http://dx.doi.org/10.1007/s00289-011-0548-2]
[386]
Klein, E.; DeBonis, S.; Thiede, B.; Skoufias, D.A.; Kozielski, F.; Lebeau, L. New chemical tools for investigating human mitotic kinesin Eg5. Bioorg. Med. Chem., 2007, 15(19), 6474-6488.
[http://dx.doi.org/10.1016/j.bmc.2007.06.016] [PMID: 17587586]
[387]
Zabihollahi, R.; Vahabpour, R.; Hartoonian, C.; Sedaghati, B.; Sadat, S.M.; Soleymani, M.; Ranjbar, M.; Fassihi, A.; Aghasadeghi, M.R.; Memarian, H.R.; Salehi, M. Evaluation of the in vitro antiretroviral potential of some Biginelli-type pyrimidines. Acta Virol., 2012, 56(1), 11-18.
[http://dx.doi.org/10.4149/av_2012_01_11] [PMID: 22404604]
[388]
Mansouri, M. Movahedian, Rostami, M.; Fassihi, A. Synthesis and antioxidant evaluation of 4-(furan -2- yl) -6- methyl-2-thioxo -1, 2, 3, 4- tetrahydro pyrimidine -5-carboxylate esters. Res. Pharm. Sci., 2012, 4, 257-264.
[PMID: 23248677]
[389]
Singh, O.M.; Singh, S.J.; Devi, M.B.; Devi, L.N.; Singh, N.I.; Lee, S.G. Synthesis and in vitro evaluation of the antifungal activities of dihydropyrimidinones. Bioorg. Med. Chem. Lett., 2008, 18(24), 6462-6467.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.063] [PMID: 18977139]
[390]
Sedaghati, B.; Fassihi, A.; Arbabi, S.; Ranjbar, M.; Memarian, H.R.; Saghaie, L. Synthesis and antimicrobial activity of novel derivativesofBiginellipyrimidines. Med. Chem. Res., In Press
[391]
Karimi-Jaberi, Z.; Moaddeli, M.S. Synthesis of 3,4-dihydropyrimi- din-2(1H)-ones and their corresponding 2(1H)thiones using trichloroacetic acid as a catalyst under solvent-free conditions. ISRN Org. Chem., 2012, 2012, 474626
[http://dx.doi.org/10.5402/2012/474626] [PMID: 24052844]
[392]
Singhal, S.; Joseph, J.K.; Jain, S.L.; Sain, B. Synthesis of 3,4-dihydropyrimidinones in the presence of water under solvent free conditions using conventional heating, microwave irradiation/ultrasound. Green Chem. Lett. Rev., 2010, 3, 23-26.
[http://dx.doi.org/10.1080/17518250903490126]
[393]
Jain, S.L.; Singhal, S.; Sain, B. PEG-assisted solvent and catalyst free synthesis of 3,4-dihydropyrimidinones under mild reaction conditions. Green Chem., 2007, 9, 740-741.
[http://dx.doi.org/10.1039/b702311a]
[394]
Wan, J.P.; Lin, Y.; Hu, K.; Liu, Y. Secondary amine-initiated three-component synthesis of 3,4-dihydropyrimidinones and thiones involving alkynes, aldehydes and thiourea/urea. Beilstein J. Org. Chem., 2014, 10, 287-292.
[http://dx.doi.org/10.3762/bjoc.10.25] [PMID: 24605149]
[395]
Wang, Z.T.; Xu, L.W.; Xia, C.G.; Wang, H.Q. Efficient synthesis of dihydropyrimidinones via a three-component Biginelli-type reaction of urea, alkylaldehyde and arylaldehyde. Tetrahedron Lett., 2004, 45, 7951-7953.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.107]
[396]
Guggilapu, S.D.; Prajapti, S.K.; Nagarsenkar, A.; Lalita, G.; Vegi, G.M.N.; Babu, B.N. MoO2Cl2 catalyzed efficient synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones/thiones and polyhydroquinolines: Recyclability, fluorescence and biological studies†. New J. Chem., 2016, 40, 838-843.
[http://dx.doi.org/10.1039/C5NJ02444G]
[397]
Heravi, M.M.; Bakhtiari, K.; Bamoharram, F.F. 12-molybdophosphoric acid: A recyclable catalyst for the synthesis of Biginelli-type 3,4-dihydropyrimidine-2(1H)-ones. Catal. Commun., 2006, 7, 373-376.
[http://dx.doi.org/10.1016/j.catcom.2005.12.007]
[398]
Cepanec, I. Litvić; Bartolinčić,A.;Lovrić,M. Ferric chloride/tetraethyl orthosilicate as an efficient system for synthesis of dihydropyrimidinones by Biginelli reaction. Tetrahedron, 2005, 61, 4275-4280.
[http://dx.doi.org/10.1016/j.tet.2005.02.059]
[399]
Handore, K.N.; Bhavsar, S.V.; Pande, N.; Chhattise, P.K.; Sharma, S.B.; Dallavalle, S.; Gaikwad, V.; Mohite, K.C.; Chabukswar, V.V. a Polyindole-ZnO Nanocomposite: Synthesis, characterization and heterogeneous catalyst for the 3,4-dihydropyrimidinone synthesis under Solvent-free Conditions. Polym. Plast. Technol. Eng., 2014, 53, 734-741.
[http://dx.doi.org/10.1080/03602559.2013.877930]
[400]
Shinde, B.; Kamble, S.; Gaikwad, P.; Ghanwat, V.; Tanpure, S.; Pagare, P.; Karale, B.; Burungale, A. Novel catalytic application of Ni@ZnO nanoparticles and ZnO nanoflakes in aqueous solution of NaPTS hydrotrope at room temperature via a green synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Res. Chem. Intermed., 2018, 44, 3097-3113.
[http://dx.doi.org/10.1007/s11164-018-3295-2]
[401]
Kakanejadifard, A. a modified-one pot synthesis of diaminoglyoxime. Iran. J. Chem. Chem. Eng., 2004, 23, 117-118.
[402]
Moghimi, A.; Hosseinzadeh-Khanmiri, R.; Shaabani, A.; Hamadani, H. A green synthesis of nitrones from diamino glyoxime using aldehydes and ketones. J. Iran. Chem. Soc., 2013, 10, 929-936.
[http://dx.doi.org/10.1007/s13738-013-0230-8]
[403]
Andrianov, V.G.; Eremeev, A.V. σ-Adducts in the 1,2,4-oxadiazole series. Chem. Heterocycl. Compd., 1990, 26, 714.
[http://dx.doi.org/10.1007/BF00756439]
[404]
Trusule, M.; Kupce, E.; Augustane, I.; Verovskii, N.V.; Lukevics, E.; Baumane, L.; Gavars, R.; Stradins, J. KhimiyaGeterotsiklicheskikhSoedinenii, 1991, 12, 1687.
[405]
Moghimi, A.; Hosseinzadeh-Khanmiri, R.; Omrani, I.; Shaabani, A. A new library of 4(3H)- and 4,4′(3H,3H′)-quinazolinones and 2-(5-alkyl-1,2,4-oxadiazol-3-yl)quinazolin-4(3H)-one obtained from diaminoglyoxime. Tetrahedron Lett., 2013, 54, 3956-3959.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.065]
[406]
Khanmiri, R.H.; Moghimi, A.; Shaabani, A.; Valizadeh, H.; Ng, S.W. HosseinzadehKhanmiri. Diaminoglyoxime as a versatile reagent in the synthesis of bis(1,2,4-oxadiazoles), 1,2,4-oxadiazolyl-quinazolines and 1,2,4-oxadiazolyl-benzothiazinones. Mol. Divers., 2014, 18(4), 769-776.
[http://dx.doi.org/10.1007/s11030-014-9536-4] [PMID: 25115630]
[407]
Colacino, E.; Nun, P.; Colacino, F.M.; Martinez, J. Solvent-free synthesis of nitrones in a ball-mill. Tetrahedron, 2008, 64, 5569-5576.
[http://dx.doi.org/10.1016/j.tet.2008.03.091]
[408]
Li, L.C.; Liao, D.Z.; Bai, L.J.; Jiang, Z.H.; Yan, S.P. Synthesis and crystal structure of oxalato-bridged dicopper(II) complex with reduced imino nitroxide radicals. J. Mol. Struct., 2004, 569, 179-183.
[http://dx.doi.org/10.1016/S0022-2860(01)00434-3]
[409]
Voinov, M.A.; Grigorev, I.A.; Volodarsky, L.B.T. Dipole-stabilized carbanions in series of cyclic aldonitrones. Part 2: Reactions of the metalated aldonitrones-derivatives of 3-imidazoline 3-oxide and 2H-imidazole 1-oxide with aldehydes and ketones. Tetrahedron, 2000, 56, 4071-4077.
[http://dx.doi.org/10.1016/S0040-4020(00)00321-5]
[410]
Green, A.R.; Ashwood, T.; Odergren, T.; Jackson, D.M. Nitrones as neuroprotective agents in cerebral ischemia, with particular reference to NXY-059. Pharmacol. Ther., 2003, 100(3), 195-214.
[http://dx.doi.org/10.1016/j.pharmthera.2003.07.003] [PMID: 14652110]
[411]
Coskun, N.; Mert, H.; Arikan, N. Dipolar cycloadditions of imidazoline 3-oxides with N-arylmaleimides. Synthesis and diethylamine induced ring-opening of exo and endo hexahydro-7-oxa-2,5,6a-triaza-cyclopenta[a]pentalene-1,3-diones. Tetrahedron, 2006, 62, 1351-1359.
[http://dx.doi.org/10.1016/j.tet.2005.11.038]
[412]
Floyd, R.A. Nitrones as therapeutics in age-related diseases. Aging Cell, 2006, 5(1), 51-57.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00189.x] [PMID: 16441843]
[413]
Banerji, A.; Sahu, A. J. Sci. Ind. Res., 1986, 45, 7-8, 355-369. [Recent advances in cycloaddition reactions of nitrones.].
[414]
Coskun, N.; Tat, F.T.; Gu¨ven, O.O. lku¨, D.; Arıcı, C. The first examples of di- and cis triaryl-3a,4,5,6-tetrahydroimidazo[1,5-b]isoxazoles and their ring-opening reactions. Tetrahedron Lett., 2000, 41, 5407-5409.
[http://dx.doi.org/10.1016/S0040-4039(00)00864-9]
[415]
Coskun, N.; Tat, F.T.; Gu¨ven, O.O. A green synthesis of nitrones from diamino glyoxime using aldehydes and ketones. Tetrahedron, 2001, 57, 3413-3417.
[416]
Popov, S.A.; Andreev, R.V.G.; Romanenko, V.; Ovcharenko, V.I.; Reznikov, V.A. Aminonitrone-N-hydroxyaminoimine tautomeric equilibrium in the series of 1-hydroxy-2-imidazolines. J. Mol. Struct., 2004, 49, 697.
[417]
Han, Y.; Tuccio, B.; Lauricella, R.; Rockenbauer, A.; Zweier, J.L.; Villamena, F.A. Synthesis and spin-trapping properties of a new spirolactonyl nitrone. J. Org. Chem., 2008, 73(7), 2533-2541.
[http://dx.doi.org/10.1021/jo702434u] [PMID: 18331054]
[418]
Hassanpour, A.; Khanmiri, R.H.; Babazadeh, M.; Edjlali, L. ZnO NPs: An efficient and reusable nanocatalystfor the synthesis of nitrones from DAG using H2O as a solvent at room-temperature. Res. Chem. Intermed., 2016, 42, 2221-2231.
[http://dx.doi.org/10.1007/s11164-015-2145-8]
[419]
Li, F.L.; Song, H.B.; Dai, B.; Tang, L.F. Synthesis, structure and biological activity of diorganotin derivatives with pyridyl functionalized bis(pyrazol-1-yl)methanes. Appl. Organomet. Chem., 2010, 24, 669-674.
[http://dx.doi.org/10.1002/aoc.1664]
[420]
Naim, M.J.; Alam, O.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8(1), 2-17.
[http://dx.doi.org/10.4103/0975-7406.171694] [PMID: 26957862]
[421]
Shankar, M.; Suvetha, K.; Kumarasamyraja, D.; Gowrishankar, N.L. Synthesis and biological evaluation of novel pyrazolyl bis-indolylmethane. Int. J. Pharm. Pharm. Sci., 2012, 4, 518-521.
[422]
Siddiqui, N.; Alam, P.; Ahsan, W. Design, synthesis, and in-vivo pharmacological screening of N,3-(substituted diphenyl)-5-phenyl-1H-pyrazoline-1-carbothioamide derivatives. Arch. Pharm. (Weinheim), 2009, 342(3), 173-181.
[http://dx.doi.org/10.1002/ardp.200800130] [PMID: 19194967]
[423]
Farahi, M.; Karami, B.; Banaki, Z.; Rastgoo, F.; Eskandari, K. TSA-catalyzed regioselective synthesis of medicinally important 4-aryl-substituted dihydropyrimidine derivatives fused to pyrazole and triazole scaffolds via an efficient and green Domino reaction. Monatsh. Chem., 2017, 148, 1469-1475.
[http://dx.doi.org/10.1007/s00706-017-1932-x]
[424]
Jones, M.W.; Baldwin, J.E.; Cowley, A.R.; Dilworth, J.R.; Karpov, A.; Smiljanic, N.; Thompson, A.L.; Adlington, R.M. Synthesis of new bulky bis(pyrazolyl)methane carboxylate (heteroscorpionate) ligands and their complexes with iron, manganese and nickel. Dalton Trans., 2012, 41(46), 14068-14086.
[http://dx.doi.org/10.1039/c2dt31859h] [PMID: 23064694]
[425]
Bakr, F. Abdel-Wahaba, Dawood, K. M. Synthesis and applications of bipyrazole systems. ARKIVOC, 2012, 2012, 491-545.
[http://dx.doi.org/10.3998/ark.5550190.0013.112]
[426]
Soltanzadeh, Z.; Imanzadeh, G.; Noroozi-Pesyan, N.; Şahin, E. Green synthesis of pyrazole systems under solvent-free conditions. Green Chem. Lett. Rev., 2017, 10, 148-153.
[http://dx.doi.org/10.1080/17518253.2017.1330428]
[427]
Maurya, H.K.; Gupta, A. A carbanion induced synthesis of highly congested pyrazoleand imidazole containing heterocycles. Tetrahedron Lett., 2014, 55, 1715-1719.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.095]
[428]
Eskandari, K.; Karami, B. A nanocatalyst-assisted protocol to the synthesis of bis(pyrazolyl)methane derivatives bearing aroyl groups by the use of arylglyoxals in the presence of ZnO nanowires as highly efficient, recyclable and green catalyst. Can. J. Chem., 2018, 96, 377-384.
[http://dx.doi.org/10.1139/cjc-2017-0503]
[429]
Abd El-Wahab, A.H. Synthesis, Reactions and Evaluation of the Antimicrobial Activity of Some 4-(p-Halophenyl)-4H-naphthopyran, Pyranopyrimidine and Pyranotriazolopyrimidine Derivatives. Pharmaceuticals (Basel), 2012, 5(7), 745-757.
[http://dx.doi.org/10.3390/ph5070745] [PMID: 24281710]
[430]
Radi, M.; Schenone, S.; Botta, M. Recent highlights in the synthesis of highly functionalized pyrimidines. Org. Biomol. Chem., 2009, 7(14), 2841-2847.
[http://dx.doi.org/10.1039/b906445a] [PMID: 19582291]
[431]
Bedair, A.H.; El-Hady, N.A.; El-Latif, M.S.A.; Fakery, A.H.; El-Agrody, A.M. 4-Hydroxycoumarin in heterocyclic synthesis: Part III. Synthesis of some new pyrano[2,3-d]pyrimidine, 2-substituted [1,2,4]triazolo[1,5-c]pyrimidine and pyrimido[1,6-b][1,2,4]triazine derivatives. Farmaco, 2000, 5, 708-714.
[http://dx.doi.org/10.1016/S0014-827X(00)00097-5] [PMID: 11204946]
[432]
Tandon, V.K.; Vaish, M.; Jain, S.; Bhakuni, D.S.; Srimal, R.C. Synthesis, carbon-13 NMR and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho[1,2-b]pyran-2-one. Indian J. Pharm. Sci., 1991, 53, 22-23.
[433]
Regnier, G.L.; Canevari, R.J.; Le Douarec, J.C.; Holstorp, S.; Daussy, J. Triphenylpropylpiperazine derivatives as new potent analgetic substances. J. Med. Chem., 1972, 15(3), 295-301.
[http://dx.doi.org/10.1021/jm00273a600] [PMID: 5059214]
[434]
Metolcsy, G. Structure-activity correlations and mode of action of some selected types of antifungal compounds. World Rev. Pest. Contr., 1971, 10, 50-59.
[435]
Zamocka, J.; Misikova, E.; Durinda, J.A. Study of the preparation, properties and effect of [(5-hydroxy)- or 5-methoxy-4-oxo-4H-pyran-2-yl)methyl]-2alkoxycarbanilates. Cesk. Farm., 1992, 41, 170.
[436]
Banzatti, C.; Branzoli, U.; Lovisolo, P.P.; Melloni, P.; Orsini, G.; Salvadori, P. Hypolipidemic activity of some derivatives of 6H-dibenzo[b,d]pyran. Arzneimittelforschung, 1984, 34(8), 864-869.
[PMID: 6541922]
[437]
Nawwar, G.A.; Abdelrazek, F.M.; Swellam, R.H. Cinnamoylnitrile-, pyran-, and pyranopyrazole-derivatives containing the salicylanilide moiety with anticipated molluscicidal activity. Arch. Pharm. (Weinheim), 1991, 324(11), 875-877.
[http://dx.doi.org/10.1002/ardp.2503241110] [PMID: 1804064]
[438]
Heckler, R.E.; Jourdan, G.P. Eur. Pat. Appl. 414386, 1991. Chem. Abstr., 1991, 115, 71630.
[439]
Pañeda, C.; Huitron-Resendiz, S.; Frago, L.M.; Chowen, J.A.; Picetti, R.; de Lecea, L.; Roberts, A.J.; Neuropeptide, S. Neuropeptide S reinstates cocaine-seeking behavior and increases locomotor activity through corticotropin-releasing factor receptor 1 in mice. J. Neurosci., 2009, 29(13), 4155-4161.
[http://dx.doi.org/10.1523/JNEUROSCI.5256-08.2009] [PMID: 19339610]
[440]
Bedair, A.H.; Emam, H.A.; El-Hady, N.A.; Ahmed, K.A.; El-Agrody, A.M. Synthesis and antimicrobial activities of novel naphtho[2,1-b]pyran, pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]-pyrimidine derivatives. Farmaco, 2001, 56(12), 965-973.
[http://dx.doi.org/10.1016/S0014-827X(01)01168-5] [PMID: 11829118]
[441]
Ganesh, C.N.; Subhasis, S.; Ram, K.; Singh, M.S. An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron, 2009, 65, 7129-7134.
[http://dx.doi.org/10.1016/j.tet.2009.06.024]
[442]
Praveen, K.K.; Satyanarayana, S.; Lakshmi Reddy, P.; Narasimhulu, G.; Ravirala, N.; Subba Reddy, B.V. Iodine-catalyzed three-component one-pot synthesis of naphthopyranopyrimidines under solvent-free conditions. Tetrahedron Lett., 2012, 53, 1738-1741.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.096]
[443]
Mohaqeq, M.; Safaei-Ghomi, J. A flexible one-pot synthesis of 8,10-dimethyl-12-aryl-9H-naphto[10,20:5,6]pyrano[2,3-d]pyrimidine-9,11-diones catalyzed by ZnO nanoparticles under solvent-free conditions. Monatsh. Chem., 2015, 146, 1581-1586.
[http://dx.doi.org/10.1007/s00706-015-1411-1]
[444]
Faridoon, O.T.O.; Klein, R.; Kaye, P.T. Application of Baylis-Hillman methodology in the direct construction of chromone derivatives. Tetrahedron, 2016, 72, 392-395.
[http://dx.doi.org/10.1016/j.tet.2015.11.039]
[445]
Maicheen, C.; Phosrithong, N.; Ungwitayatorn, J. Docking study on anticancer activity of chromone derivatives. Med. Chem. Res., 2013, 22, 45-56.
[http://dx.doi.org/10.1007/s00044-012-0009-y]
[446]
Vints, I.; Rozen, S. Fluorination of flavones and chromones using elemental fluorine. J. Org. Chem., 2014, 79(16), 7261-7265.
[447]
Ghani, B.S.A.; Mugisha, P.J.; Wilcox, J.C.; Gado, E.A.M.; Medu, E.O.; Lamb, A.J.; Brown, R.C.D. Convenient one-potsynthesis of chromone derivatives and their antifungal andantibacterial evaluation. Synth. Commun., 2013, 43, 1549-1556.
[http://dx.doi.org/10.1080/00397911.2011.647222]
[448]
Velema, W.A.; van der Toorn, M.; Szymanski, W.; Feringa, B.L. Design, synthesis, and inhibitory activity of potent, photoswitchable mast cell activation inhibitors. J. Med. Chem., 2013, 56(11), 4456-4464.
[http://dx.doi.org/10.1021/jm400115k] [PMID: 23617679]
[449]
Gerwick, W.H. 6-Desmethoxyhormothamnione, a new cytotoxic styrylchromone from the marine cryptophyte Chrysophaeum taylori. J. Nat. Prod., 1989, 52(2), 252-256.
[http://dx.doi.org/10.1021/np50062a005] [PMID: 2746254]
[450]
Sandulache, A.; Silva, A.M.S.; Pinto, D.C.G.A.; Almeida, L.M.P.M.; Cavaleiro, J.A.S. Wittig reactions of chromone-3-carboxaldehydes with benzylidene triphenyl phosphoranes: a new synthesisof 3-styrylchromones. New J. Chem., 2003, 27, 1592-1598.
[http://dx.doi.org/10.1039/b303554a]
[451]
Kim, D.; Hong, S. Palladium(II)-catalyzed direct intermolecular alkenylation of chromones. Org. Lett., 2011, 13(16), 4466-4469.
[http://dx.doi.org/10.1021/ol2018278] [PMID: 21797199]
[452]
Silva, V.L.M.; Silva, A.M.S.; Pinto, D.C.G.A.; Cavaleiro, J.A.S. Syntheses of (E)- and-(Z)-3-styrylchromones. Monatsh. Chem., 2008, 139, 1307-1315.
[http://dx.doi.org/10.1007/s00706-008-0926-0]
[453]
Karale, B.K.; Gill, C.H.; Ganage, K.N.; Bachute, M.T.; Shingare, M.S. Synthesis of styrylpyrimidines. Indian J. Heterocycl. Chem., 2003, 12, 267-270.
[454]
Shelke, K.F.; Sapkal, S.B.; Shitole, N.V.; Shingate, B.B.; Shingare, M.S. Microwave-assisted synthesis of 3-styrylchromones inalkaline ionic liquid. Bull. Korean Chem. Soc., 2009, 30, 2883-2886.
[http://dx.doi.org/10.5012/bkcs.2009.30.12.2883]
[455]
Kunde, S.P.; Kanade, K.G.; Bhausaheb, K.K.; Akolkar, H.N.; Randhavane, P.V.; Shinde, S.T. Synthesis and characterization of nanostructured Cu-ZnO: An efficient catalyst for the preparation of (E)-3-styrylchromones. Arab. J. Chem., 2016.
[456]
Mashelkar, U.C.; Rane, D.M. Synthesis of some isatin based novel spiroheterocycles and their biological activity studies. Indian J. Chem. B., 2005, 44, 1937-1939.
[457]
Joshi, K.C.; Jain, R.; Chand, P. Indoles with C-3 as spiroatom. Heterocycles, 1985, 23, 957-996.
[http://dx.doi.org/10.3987/R-1985-04-0957]
[458]
Palucki, B.L.; Feighner, S.D.; Pong, S.; McKee, K.K.; Hreniuk, D.L.; Tan, C.; Howard, A.D.; Van der Ploeg, L.H.; Patchett, A.A.; Nargund, R.P. Spiro(indoline-3,4′-piperidine) growth hormone secretagogues as ghrelin mimetics. Bioorg. Med. Chem. Lett., 2001, 11(14), 1955-1957.
[http://dx.doi.org/10.1016/S0960-894X(01)00324-9] [PMID: 11459669]
[459]
Dandia, A.; Laxkar, A.K.; Singh, R. New multicomponent domino reaction on water: highly diastereoselective synthesis of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines] catalyzed by NaCl. Tetrahedron Lett., 2012, 53, 3012-3017.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.136]
[460]
Azizian, J.; Morady, A.V.; Soozangarzadeh, S.; Asad, A. Synthesis of novel spiro-[3H-indole-3,3′-[1,2,4]triazolidine]-2-ones via azomethine imines. Tetrahedron Lett., 2002, 43, 9721-9723.
[http://dx.doi.org/10.1016/S0040-4039(02)02061-0]
[461]
Sachdeva, H.; Saroj, R.; Dwivedi, D. Nano-ZnO catalyzed multicomponent one-pot synthesis of novel spiro(indoline-pyranodioxine) derivatives. ScientificWorldJournal, 2014, 2014, 427195
[http://dx.doi.org/10.1155/2014/427195] [PMID: 24683341]
[462]
Maquenne, L.; Philippe, L. C. R. Hebd. Seances Acad. Sci., 1904, 139, 840-843.
[463]
Basyouni, S.H.E.; Brewer, D.; Vining, L.C. Pigments of the genus Beauveria. Can. J. Bot., 1968, 46, 441-448.
[http://dx.doi.org/10.1139/b68-067]
[464]
Cheng, X.; Waters, S.P. Pyridone annulation via tandem Curtius rearrangement/6π-electrocyclization: total synthesis of (-)-lyconadin C. Org. Lett., 2013, 15(16), 4226-4229.
[http://dx.doi.org/10.1021/ol401954f] [PMID: 23909645]
[465]
De, S.; Chen, L.; Zhang, S.; Gilbertson, S.R. Synthesis of a 2(1H)-pyridone library via rhodium-catalyzed formation of isomunchones. ACS Comb. Sci., 2013, 15(7), 340-343.
[http://dx.doi.org/10.1021/co400067q] [PMID: 23742807]
[466]
Klein, N.A.; Siskind, S.J.; Frishman, W.H.; Sonnenblick, E.H.; LeJemtel, T.H. Hemodynamic comparison of intravenous amrinone and dobutamine in patients with chronic congestive heart failure. Am. J. Cardiol., 1981, 48(1), 170-175.
[http://dx.doi.org/10.1016/0002-9149(81)90587-7] [PMID: 7246440]
[467]
Koster, G.; Bekema, H.J.; Wetterslev, J.; Gluud, C.; Keus, F.; van der Horst, I.C.C. Milrinone for cardiac dysfunction in critically ill adult patients: a systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med., 2016, 42(9), 1322-1335.
[http://dx.doi.org/10.1007/s00134-016-4449-6] [PMID: 27448246]
[468]
Gottwald, M.D.; Aminoff, M.J. New frontiers in the pharmacological management of Parkinson’s disease. Drugs Today (Barc), 2008, 44(7), 531-545.
[http://dx.doi.org/10.1358/dot.2008.44.7.1217105] [PMID: 18806903]
[469]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H. Plant Antitumor Agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptothecaacuminata. J. Am. Chem. Soc., 1966, 88, 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[470]
Giovanella, B.C.; Stehlin, J.S.; Wall, M.E.; Wani, M.C.; Nicholas, A.W.; Liu, L.F.; Silber, R.; Potmesil, M. DNA topoisomerase I--targeted chemotherapy of human colon cancer in xenografts. Science, 1989, 246(4933), 1046-1048.
[http://dx.doi.org/10.1126/science.2555920] [PMID: 2555920]
[471]
Ozols, R.F. Optimum chemotherapy for ovarian cancer. Int. J. Gynecol. Cancer, 2000, 10(S1), 33-37.
[http://dx.doi.org/10.1046/j.1525-1438.2000.99508.x] [PMID: 11240730]
[472]
Vanhoefer, U.; Harstrick, A.; Achterrath, W.; Cao, S.; Seeber, S.; Rustum, Y.M. Irinotecan in the treatment of colorectal cancer: clinical overview. J. Clin. Oncol., 2001, 19(5), 1501-1518.
[http://dx.doi.org/10.1200/JCO.2001.19.5.1501] [PMID: 11230497]
[473]
Dickinson, J.M.; Hanson, J.R.; Hitchcock, P.B.; Claydon, N. Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J. Chem. Soc., Perkin Trans. 1, 1989, 1885-1887
[http://dx.doi.org/10.1039/p19890001885]
[474]
Pierce, J.B.; Ariyan, Z.S.; Ovenden, G.S. Preparation and antiinflammatory activity of 2- and 4-pyridones. J. Med. Chem., 1982, 25(2), 131-136.
[http://dx.doi.org/10.1021/jm00344a008] [PMID: 7057417]
[475]
Grenda, V.J.; Czaja, R.F. Canadian Patents, 1971. 865755, 865756, and 865757.
[476]
Kato, M.; Kusakabe, H.; Yanagihara, S.; Akizawa, H.; Tamoto, Y. Pharmaceutical compositions containing 2-pyridone derivatives as effective components. U.S. Patent, 2009/0298889 A1. 2009. Dec;3
[477]
Parreira, R.L.T.; Abrahao, O.; Galembeck, S.E. Conformational preferences of non-nucleoside HIV-1 reverse transcriptase inhibitors. Tetrahedron, 2001, 57, 3243-3253.
[http://dx.doi.org/10.1016/S0040-4020(01)00193-4]
[478]
Su, Y.; Zhao, M.; Han, K.; Song, G.; Li, X. Synthesis of 2-pyridones and iminoesters via Rh(III)-catalyzed oxidative coupling between acrylamides and alkynes. Org. Lett., 2010, 12(23), 5462-5465.
[http://dx.doi.org/10.1021/ol102306c] [PMID: 21033749]
[479]
Fujii, M.; Nishimura, T.; Koshiba, T.; Yokoshima, S.; Fukuyama, T. 2-Pyridone synthesis using 2-(phenylsulfinyl)acetamide. Org. Lett., 2013, 15(1), 232-234.
[http://dx.doi.org/10.1021/ol303320c] [PMID: 23249369]
[480]
Yavari, I.; Bayat, M.J. An efficient organocatalytic method for tandem synthesis of functionalized 2-pyridones. Tetrahedron Lett., 2011, 52, 6649-6651.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.029]
[481]
Li, W.; Chen, Y.; Lam, Y. A facile solid-phase synthesis of 3, 4, 6-trisubstituted-2-pyridones using sodium benzenesulfinate as a traceless linker. Tetrahedron Lett., 2004, 45, 6545-6547.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.051]
[482]
Chun, Y.S.; Ryu, K.Y.; Ko, Y.O.; Hong, J.Y.; Hong, J.; Shin, H.; Lee, S.G. One-pot synthesis of 2-pyridones via chemo- and regioselective tandem Blaise reaction of nitriles with propiolates. J. Org. Chem., 2009, 74(19), 7556-7558.
[http://dx.doi.org/10.1021/jo901642t] [PMID: 19778084]
[483]
Mondal, P.; Bhaumik, A.; Chatterjee, S.; Mukhopadhyay, C. Fabrication of ionic-liquid-embedded ZnO nanoparticles: Application of a synergistic catalytic effect to thiol-induced 2-pyridone synthesis. Asian J. Org. Chem., 2018, 7, 964-976.
[http://dx.doi.org/10.1002/ajoc.201700610]
[484]
Ghosh, P.P.; Das, A.R. Nanocrystalline and reusable ZnO catalyst for the assembly of densely functionalized 4H-chromenes in aqueous medium via one-pot three component reactions: a greener “Nose” approach. J. Org. Chem., 2013, 78, 6170-6181.
[485]
Ghosh, P.P.; Das, A.R. Nano Crystalline ZnO: A competent and reusable catalyst for one-pot synthesis of novel benzylamino coumarin derivatives in aqueous media. Tetrahedron Lett., 2012, 53, 3140-3143.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.033]
[486]
Paul, S.; Bhattacharyyaa, P.; Das, A.R. One-pot synthesis of dihydropyrano[2,3-c]chromenes via a three component coupling of aromatic aldehydes, malononitrile, and 3-hydroxycoumarin catalyzed by nano-structured ZnO in water: a green protocol. Tetrahedron Lett., 2011, 52, 4636-4641.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.101]
[487]
Bhattacharyya, P.; Pradhan, K.; Paul, S.; Das, A.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for aneasy access of fully decorated 4H-pyran scaffolds and its rearrangement to2-pyridone nucleus in aqueous media. Tetrahedron Lett., 2012, 53, 3140-3143.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.086]

© 2024 Bentham Science Publishers | Privacy Policy