[4]
Saini, M.S.; Kumar, A. Dwivedi; J.; Singh. R. A review. Biological significances of heterocyclic compounds. IJPSR, 2013, 4, 66-77.
[9]
Gaeti, W.P.; Obreli-Neto, P.R.; Cuman, R.K.N. Interaction between levothyroxine and phenprocoumon: A case report. Cent. Eur. J. Med., 2014, 9(2), 231-234.
[16]
Sangani, M.H.; Moghaddam, M.N.; Mahdi, M. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed. J., 2015, 2, 121-128.
[19]
Umamaheswari, A.; Lakshmana, P.S.; Puratchikody, A. Biosynthesis of zinc oxide nanoparticle: a review on greener approach. MOJ BioequivAvailab., 2018, 5, 151-154.
[22]
Tanabe, K.; Holderich, W. F. Industrial application of solid acidbase
catalysts. Appl.Catal., 1999, 181, 399-434.
[27]
Rana, S.B.; Singh, P.; Sharma, A.K.; Carbonari, A.W.; Dogra, R. Synthesis and characterization of pure and doped ZnO nanoparticles. J. Optoelectron. Adv. Mater., 2010, 12, 257-261.
[29]
Huang, C.; Wang, Y.; Luo, G. Preparation of highly dispersed and small-sized ZnO nanoparticles in a membrane dispersion microreactor and their photocatalytic degradation. Ind. Eng. Chem. Res., 2013, 52, 5683-5690.
[41]
Anbukkarasi, V.; Srinivasan, R.; Elangovan, N. Antimicrobial activity of green synthesized zinc oxide nanoparticles from Emblica officinalis. Int. J. Pharm. Sci. Rev. Res., 2015, 33, 110-115.
[44]
Osman, D.; Mustafa, M. synthesis and characterization of zinc oxide nanoparticles using zinc acetate dihydrate and sodium hydroxide. J. Nanosci. Nanoeng., 2015, 1, 248-251.
[48]
Bhumi, G.; Savithramma, N. Biological synthesis of zinc oxide nanoparticles from catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity. Int. J. Drug Develop. Res., 2014, 6, 208-214.
[49]
Sundaraselvan, G.; Quine, S.D. Green synthesis of zinc oxide nanoparticle using seed extract of Murraya Koenigii and their antimicrobial activity against some human pathogens. J. Nanosci. Technol., 2017, 3, 289-292.
[60]
Vaseem, M.; Umar, A.; Hahn, Y.B. Hyperlink ZnO nanoparticles:
Growth, properties, and applications. In: Umar, A.; Hahn, Y.B.
(eds.). In: Metal Oxide Nanostructures and Their Applications; American
Scientific Publisher, New York, USA, 2010; 5, pp. 1-3.
[61]
Prasad, K.; Jha, A.K. HYPERLINK ZnO nanoparticles: Synthesis and adsorption study. Nat. Sci., 2009, 1, 129-135.
[68]
Kühn, H. Zinc white a review of zinc oxide pigment properties and implications for stability in oil-based paintings. AICCM Bulletin, 1986, 33, 20-29.
[72]
Rajeshkumar, S. Synthesis of silver nanoparticles using fresh bark of Pongamiapinnata and characterization of its antibacterial activity against gram positive and gram-negative pathogens. Resour. Technol., 2016, 2, 30-35.
[75]
Wang, Z.L.; Kang, Z.C. Functional and smart materials - structural evolution and structure analysis; Plenum Press: New York, 1998.
[131]
Sabbaghan, M.; Sanaeishoar, H.; Ghalaei, A.; Sofalgar, P. Solvent-free synthesis of polysubstituted pyrroles catalyzed by ZnO nanorods, J. Iran. Chem. SOC, 2015, 12, 2199-2204.
[132]
Marshal, P.G. Rodd’s Chemistry of Carbon Compounds, 2nd ed;
Elsevier: New York. 1970, 2 Part D;, 369-375.
[161]
Waser, M.; Falk, H. Towards second generation hypericin based photosensitizers for photodynamic therapy. Eur. J. Org. Chem., 2006, 11, 547-558.
[173]
Bahuguna, A.; Kumar, S.; Sharma, V.; Reddy, K.L.; Bhattacharyya, K.; Ravikumar, P.C.; Krishnan, V. Nanocomposite of MoS2 RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids. ACS Sustain. Chem. Eng., 2017, 5, 8551-8567.
[186]
Zonouz, A.M.; Sahranavard, N. Synthesis of 1,4-Dihydropyridine Derivatives Under Aqueous Media. J. Chem., 2010, 7, 72-76.
[192]
Simpson, T.J.; Thomson, R.H. The Chemistry of Natural Products; Blackie: London, 1985.
[219]
Moskovkina, T.V.; Kalinovskii, A.I.; Makhan’kov, V.V. Russ. Synthesis of tryptanthrin (couroupitine) derivatives by reaction of substituted isatins with phosphoryl chloride. J. Org. Chem., 2012, 48, 123-126.
[227]
Patil, S.; Mane, A.; Dhongade-Desai, S. Ultrasound assisted synthesis of tryptanthrins catalyzed by zinc oxidenanoparticles. Chem. Sci. Rev. Lett., 2018, 7, 732-740.
[232]
Mei, G. J.; Shi, F. Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org. Biomol. Chem., 2017, 8, 3078-3082.
[239]
Brown, M.; Johnson, M.G.; Li, A.R.; Liu, J.; Lively, S.E.; Medina, J.C.; Shen, W.; Mateo, S.; Wang, X.; Wang, Y. Boric acid catalyzed convenient synthesis of 2-amino- 3,5-dicarbonitrile-6-thio-pyridines in aqueous media. Tetrahedron Lett., 2008, 51, 1309-1312.
[251]
Haghighi, M.; Nikoofar, K.; Ahmadvand, Z. Growth of wurtzite ZnO nanorods using different capping agents: Characterization, morphology, and investigation the catalyticactivity in some oxindoles and indolyl organics. Nanochem Res., 2018, 3, 131-141.
[253]
Asif, M. Biological potentials of substituted tetrazole compounds. Pharm. Methods, 2014, 5, 1-8.
[275]
Butler, R.N.; Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V., Eds.; Comprehensive Heterocyclic Chemistry; Pergamon: Oxford, UK, 1996, p. 4.
[297]
Dieter, R.K.; Yu, H. An efficient approach for the synthesis of 1,1-bis(2-phenyl-3-indolyl)ethylene Using ZnO Nanocatalyst. J. Heterocycl. Chem., 2000, 55, 402-407.
[302]
Batcho, A.; Leimgruber, W. Indoles from 2-methylnitrobenzenes by condensation with formamide acetals followed by reduction: 4-benzyloxyindole. Org. Synth., 1985, 63, 214-220.
[303]
Batcho, A.D.; Leimgruber, W. Atropaldehyde. Org. Synth., 1990, 7, 34-41.
[304]
Madelung, W. ÜberUmlagerung von Phenol‐allyläthern in C‐Allyl‐phenole. Dtsch. Chem. Ges., 1912, 45, 1128-1134.
[305]
Ito, Y.; Kobayashi, K.; Saegusa, T. An efficient synthesis of indole. J. Am. Chem. Soc., 1977, 99, 3532-3534.
[306]
He, F.; Bo, Y.; Altom, J.D.; Corey, E.J. Enantioselective total synthesis of aspidophytine. J. Am. Chem. Soc., 1999, 121, 6771-6772.
[307]
Llabres-Campaner, P.J.; Ballesteros-Garrido, R.; Ballesteros, R.; Abarca, B. Straight access to indoles from anilines and ethylene glycol by heterogeneous acceptorless dehydrogenative condensation. J. Org. Chem., 2018, 83, 521-526.
[309]
Charles, W. Francis, Warfarin: An historical perspective. Heamatology, 2008, 1, 251.
[320]
Brunavs, M.; Dell, C.P.; Gallagher, P.T.; Owton, W.M.; Smith, C.W. Eur. Pat. Appl. EP., 1993, 557075, A1-A19930825.
[323]
El-Agrody, A.M.; El-Hakium, M.H.; Abd El-Latif, M.S.; Fekry, A.H.; El-Sayed, E.S.M. El-Gareab, K. A. Synthesis of pyrano [2,3-d]pyrimidine and pyrano[3,2-e] [1,2,4]triazolo[2,3-c]pyrimidine derivatives with promising antibacterial activity. Acta Pharm., 2000, 50, 111-120.
[324]
Elinson, M. N.; Dorofeev, A. S.; Miloserdov, F. M.; Ilovaisky, A. I.; Feducovich, S. K.; Belyakov, P. A.; Nikishina, G. I.; Dorofeev, A. S.; Zelinsky, N. D. Electrochemically Induced Three-Component Synthesis of Chromenes. Synfacts, 2008, 6, 0568-0568.
[336]
Singh, K.N.; Singh, S.K. Microwave-assisted, one-pot multicomponent synthesis of highly substituted pyridines using KF/alumina. ARKIVOC, 2009, XIII, 153-160.
[341]
Patil, K.; Kumbhar, D.; Patil, A.; Karhale, S.; Helavi, V. Multicomponent, one-pot synthesis of highly substituted pyridines with zinc oxide naniparticles as catalyst. Indian J. Heterocycl. Chem., 2017, 27, 157-164.
[352]
Zhou, Y.; He, T.; Wang, Z. Nanoparticles of silver oxide immobilized on different templates: Highly efficient catalyst for three-component coupling of aldehyde-amine-alkyne. ARKIVOC, 2008, xiii, 80-90.
[359]
Wang, G.; Peng, Z.; He, D.; Yan, C.; Liu, W. Inventors; Jishou
University, Peop. Rep. China. Assignee. Coumarin-isatin type
compound useful in treatment of diabetes mellitus and its preparation
patent CN105237521A. 2016.
[365]
Al-kadhimi, Ahmed, A. H.; Al-azzawi, Nuhad K. E.; Khalaf, A.I.. Facile synthesis of Schiff and Mannich bases of isatin derivatives. J. Chem. Biol. Phys. Sci., 2015, 5, 2338-2349.
[371]
Scarpelli, R. Toxicity of pesticides. Pesticide News, 2000, 48, 20.
[384]
Pan, W.; He, X.; Chen, Y. Preparation and characterization of poly(vinyl alcohol)- antimony doped tin oxide nanocomposites. Int. J. Polym. Mater., 2011, 60, 223-232.
[390]
Sedaghati, B.; Fassihi, A.; Arbabi, S.; Ranjbar, M.; Memarian, H.R.; Saghaie, L. Synthesis and antimicrobial activity of novel derivativesofBiginellipyrimidines. Med. Chem. Res., In Press
[401]
Kakanejadifard, A. a modified-one pot synthesis of diaminoglyoxime. Iran. J. Chem. Chem. Eng., 2004, 23, 117-118.
[404]
Trusule, M.; Kupce, E.; Augustane, I.; Verovskii, N.V.; Lukevics, E.; Baumane, L.; Gavars, R.; Stradins, J. KhimiyaGeterotsiklicheskikhSoedinenii, 1991, 12, 1687.
[413]
Banerji, A.; Sahu, A. J. Sci. Ind. Res., 1986, 45, 7-8, 355-369. [Recent advances in cycloaddition reactions of nitrones.].
[415]
Coskun, N.; Tat, F.T.; Gu¨ven, O.O. A green synthesis of nitrones from diamino glyoxime using aldehydes and ketones. Tetrahedron, 2001, 57, 3413-3417.
[416]
Popov, S.A.; Andreev, R.V.G.; Romanenko, V.; Ovcharenko, V.I.; Reznikov, V.A. Aminonitrone-N-hydroxyaminoimine tautomeric equilibrium in the series of 1-hydroxy-2-imidazolines. J. Mol. Struct., 2004, 49, 697.
[421]
Shankar, M.; Suvetha, K.; Kumarasamyraja, D.; Gowrishankar, N.L. Synthesis and biological evaluation of novel pyrazolyl bis-indolylmethane. Int. J. Pharm. Pharm. Sci., 2012, 4, 518-521.
[432]
Tandon, V.K.; Vaish, M.; Jain, S.; Bhakuni, D.S.; Srimal, R.C. Synthesis, carbon-13 NMR and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho[1,2-b]pyran-2-one. Indian J. Pharm. Sci., 1991, 53, 22-23.
[434]
Metolcsy, G. Structure-activity correlations and mode of action of some selected types of antifungal compounds. World Rev. Pest. Contr., 1971, 10, 50-59.
[435]
Zamocka, J.; Misikova, E.; Durinda, J.A. Study of the preparation, properties and effect of [(5-hydroxy)- or 5-methoxy-4-oxo-4H-pyran-2-yl)methyl]-2alkoxycarbanilates. Cesk. Farm., 1992, 41, 170.
[438]
Heckler, R.E.; Jourdan, G.P. Eur. Pat. Appl. 414386, 1991. Chem. Abstr., 1991, 115, 71630.
[446]
Vints, I.; Rozen, S. Fluorination of flavones and chromones using elemental fluorine. J. Org. Chem., 2014, 79(16), 7261-7265.
[453]
Karale, B.K.; Gill, C.H.; Ganage, K.N.; Bachute, M.T.; Shingare, M.S. Synthesis of styrylpyrimidines. Indian J. Heterocycl. Chem., 2003, 12, 267-270.
[455]
Kunde, S.P.; Kanade, K.G.; Bhausaheb, K.K.; Akolkar, H.N.; Randhavane, P.V.; Shinde, S.T. Synthesis and characterization of nanostructured Cu-ZnO: An efficient catalyst for the preparation of (E)-3-styrylchromones. Arab. J. Chem., 2016.
[456]
Mashelkar, U.C.; Rane, D.M. Synthesis of some isatin based novel spiroheterocycles and their biological activity studies. Indian J. Chem. B., 2005, 44, 1937-1939.
[462]
Maquenne, L.; Philippe, L. C. R. Hebd. Seances Acad. Sci., 1904, 139, 840-843.
[475]
Grenda, V.J.; Czaja, R.F. Canadian Patents, 1971. 865755, 865756, and 865757.
[476]
Kato, M.; Kusakabe, H.; Yanagihara, S.; Akizawa, H.; Tamoto, Y. Pharmaceutical compositions containing 2-pyridone derivatives as
effective components. U.S. Patent, 2009/0298889 A1. 2009. Dec;3
[484]
Ghosh, P.P.; Das, A.R. Nanocrystalline and reusable ZnO catalyst for the assembly of densely functionalized 4H-chromenes in aqueous medium via one-pot three component reactions: a greener “Nose” approach. J. Org. Chem., 2013, 78, 6170-6181.