Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Marine Natural Products with High Anticancer Activities

Author(s): Dario Matulja, Karlo Wittine, Nela Malatesti, Sylvain Laclef, Maris Turks, Maria Kolympadi Markovic, Gabriela Ambrožić and Dean Marković*

Volume 27, Issue 8, 2020

Page: [1243 - 1307] Pages: 65

DOI: 10.2174/0929867327666200113154115

Price: $65

conference banner
Abstract

This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.

Keywords: Anticancer, antitumor, cytotoxic, marine, medicinal chemistry, natural products.

[1]
Schram, F.R.; Ng, P.K.L. What Is Cancer? J. Crustac. Biol., 2012, 32(4), 665-672.
[http://dx.doi.org/10.1163/193724012X640650] [PMID: 22287760]
[2]
Rocha, D.H.A.; Seca, A.M.L.; Pinto, D.C.G.A. Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity. Mar. Drugs, 2018, 16(11), 410-436.
[http://dx.doi.org/10.3390/md16110410] [PMID: 30373208]
[3]
Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds--an overview of the last decade and future steps for bioprospecting. Mar. Drugs, 2011, 9(10), 1860-1886.
[http://dx.doi.org/10.3390/md9101860] [PMID: 22073000 ]
[4]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36(1), 122-173.
[http://dx.doi.org/10.1039/C8NP00092A] [PMID: 30663727 ]
[5]
Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine Bioactive compounds and their health benefits: a review. Compr. Rev. Food Sci. Food Saf., 2015, 14(4), 446-465.
[http://dx.doi.org/10.1111/1541-4337.12136]
[6]
Ercolano, G.; De Cicco, P.; Ianaro, A. New drugs from the sea: pro-apoptotic activity of sponges and algae derived compounds. Mar. Drugs, 2019, 17(1), 31-61.
[http://dx.doi.org/10.3390/md17010031] [PMID: 30621025 ]
[7]
Suleria, H.A.R.; Gobe, G.; Masci, P.; Osborne, S.A. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci. Technol., 2016, 50, 44-55.
[http://dx.doi.org/10.1016/j.tifs.2016.01.019]
[8]
Gribble, G.W. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar. Drugs, 2015, 13(7), 4044-4136.
[http://dx.doi.org/10.3390/md13074044] [PMID: 26133553 ]
[9]
Gribble, G.W. Naturally occurring organohalogen compounds--a comprehensive survey. Fortschr. Chem. Org. Naturst., 1996, 68, 1-423.
[http://dx.doi.org/10.1007/978-3-7091-6887-5_1] [PMID: 8795309 ]
[10]
Gribble, G.W. Naturally occurring organohalogen compounds - a comprehensive update. Acc. Chem. Res., 2010, 91, 1-613.
[11]
Gribble, G.W. Occurrence of Halogenated Alkaloids.Alkaloids: Chemistry and Biology; Knölker, H-J., Ed.; Academic Press: Amsterdam, The Netherlands, , 2012; pp. 1-165.
[http://dx.doi.org/10.1016/B978-0-12-398282-7.00001-1]
[12]
Gribble, G.W. Recently discovered naturally occurring heterocyclic organohalogen compounds. Heterocycles, 2012, 84(1), 157-207.
[http://dx.doi.org/10.3987/REV-11-SR(P)5]
[13]
Hernandes, M.Z.; Cavalcanti, S.M.; Moreira, D.R.; de Azevedo, Junior, W.F.; Leite, A.C. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr. Drug Targets, 2010, 11(3), 303-314.
[http://dx.doi.org/10.2174/138945010790711996] [PMID: 20210755]
[14]
Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev., 2016, 116(4), 2478-2601.
[http://dx.doi.org/10.1021/acs.chemrev.5b00484] [PMID: 26812185 ]
[15]
Mantri, R.V.; Sanghvi, R.; Zhu, H.J. Solubility of pharmaceutical solids In; Developing Solid Oral Dosage Forms, 2017, pp. 3-22.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00001-7]
[16]
Dyshlovoy, S.A.; Fedorov, S.N.; Shubina, L.K.; Kuzmich, A.S.; Bokemeyer, C.; Keller-von Amsberg, G.; Honecker, F. Aaptamines from the marine sponge Aaptos sp. display anticancer activities in human cancer cell lines and modulate AP-1-, NF-κB-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells. BioMed Res. Int., 2014, 469309-469316.
[http://dx.doi.org/10.1155/2014/469309] [PMID: 25215281]
[17]
McClary, B.; Zinshteyn, B.; Meyer, M.; Jouanneau, M.; Pellegrino, S.; Yusupova, G.; Schuller, A.; Reyes, J.C.P.; Lu, J.; Guo, Z.; Ayinde, S.; Luo, C.; Dang, Y.; Romo, D.; Yusupov, M.; Green, R.; Liu, J.O. Inhibition of eukaryotic translation by the antitumor natural product agelastatin A. Cell Chem. Biol., 2017, 24(5), 605-613.e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.04.006] [PMID: 28457705]
[18]
Jouanneau, M.; McClary, B.; Reyes, J.C.P.; Chen, R.; Chen, Y.; Plunkett, W.; Cheng, X.; Milinichik, A.Z.; Albone, E.F.; Liu, J.O.; Romo, D. Derivatization of agelastatin A leading to bioactive analogs and a trifunctional probe. Bioorg. Med. Chem. Lett., 2016, 26(8), 2092-2097.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.051] [PMID: 26951751 ]
[19]
Stout, E.P.; Choi, M.Y.; Castro, J.E.; Molinski, T.F. Potent fluorinated agelastatin analogues for chronic lymphocytic leukemia: design, synthesis, and pharmacokinetic studies. J. Med. Chem., 2014, 57(12), 5085-5093.
[http://dx.doi.org/10.1021/jm4016922] [PMID: 24673739 ]
[20]
Akl, M.R.; Ayoub, N.M.; Ebrahim, H.Y.; Mohyeldin, M.M.; Orabi, K.Y.; Foudah, A.I.; El Sayed, K.A.; Araguspongine, C. Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling. Mar. Drugs, 2015, 13(1), 288-311.
[http://dx.doi.org/10.3390/md13010288] [PMID: 25580621 ]
[21]
Kobayashi, M.; Kawazoe, K.; Kitagawa, I.; Araguspongines, B.; Araguspongines, B. C, D, E, F, G, H, and J, new vasodilative bis-1-oxaquinolizidine alkaloids from an okinawan marine sponge, Xestospongia sp. Chem. Pharm. Bull. (Tokyo), 1989, 37(6), 1676-1678.
[http://dx.doi.org/10.1248/cpb.37.1676] [PMID: 2776247]
[22]
Palkar, M.B.; Rane, R.A.; Thapliyal, N.; Shaikh, M.S.; Alwan, W.S.; Jain, K.S.; Karunanidhi, S.; Patel, H.M.; Hampannavar, G.A.; Karpoormath, R. An insight into purine, tyrosine and tryptophan derived marine antineoplastic alkaloids. Anticancer. Agents Med. Chem., 2015, 15(8), 947-954.
[http://dx.doi.org/10.2174/1871520615666150101143520] [PMID: 25553433 ]
[23]
Mathieu, V.; Wauthoz, N.; Lefranc, F.; Niemann, H.; Amighi, K.; Kiss, R.; Proksch, P. Cyclic versus hemi-bastadins. pleiotropic anti-cancer effects: from apoptosis to anti-angiogenic and anti-migratory effects. Molecules, 2013, 18(3), 3543-3561.
[http://dx.doi.org/10.3390/molecules18033543] [PMID: 23519198 ]
[24]
Gartshore, C.J.; Salib, M.N.; Renshaw, A.A.; Molinski, T.F. Isolation of bastadin-6-O-sulfate and expedient purifications of bastadins-4, -5 and -6 from extracts of Ianthella basta. Fitoterapia, 2018, 126, 16-21.
[http://dx.doi.org/10.1016/j.fitote.2017.12.003] [PMID: 29221701 ]
[25]
El-Demerdash, A.; Moriou, C.; Martin, M.T. Rodrigues-Stien, Ade.S.; Petek, S.; Demoy-Schneider, M.; Hall, K.; Hooper, J.N.A.; Debitus, C.; Al-Mourabit, A. Cytotoxic Guanidine Alkaloids from a French Polynesian Monanchora n. sp. Sponge. J. Nat. Prod., 2016, 79(8), 1929-1937.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00168] [PMID: 27419263]
[26]
Rane, R.A.; Bangalore, P.K.; Naphade, S.S.; Patel, H.M.; Palkar, M.B.; Karpoormath, R. Design and synthesis of novel antineoplastic agents inspired from marine bromopyrrole alkaloids. Anticancer. Agents Med. Chem., 2015, 15(5), 548-554.
[http://dx.doi.org/10.2174/1871520614666141203124745] [PMID: 25495466]
[27]
Rane, R.A.; Sahu, N.U.; Gutte, S.D.; Mahajan, A.A.; Shah, C.P.; Bangalore, P. Synthesis and evaluation of novel marine bromopyrrole alkaloid-based hybrids as anticancer agents. Eur. J. Med. Chem., 2013, 63, 793-799.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.029] [PMID: 23584542 ]
[28]
Rane, R.A.; Naphade, S.S.; Bangalore, P.K.; Palkar, M.B.; Patel, H.M.; Shaikh, M.S.; Alwan, W.S.; Karpoormath, R. Synthesis of novel hybrids inspired from bromopyrrole alkaloids inhibiting MMP-2 and -12 as antineoplastic agents. Chem. Biol. Drug Des., 2015, 86(2), 210-222.
[http://dx.doi.org/10.1111/cbdd.12481] [PMID: 25418204 ]
[29]
Xu, S.; Nijampatnam, B.; Dutta, S.; Velu, S.E. Cyanobacterial metabolite calothrixins: recent advances in synthesis and biological evaluation. Mar. Drugs, 2016, 14(1), 17-37.
[http://dx.doi.org/10.3390/md14010017] [PMID: 26771620]
[30]
Yingyuad, P.; Sinthuvanich, C.; Leepasert, T.; Thongyoo, P.; Boonrungsiman, S. Preparation, characterization and in vitro evaluation of calothrixin B liposomes. J. Drug Deliv. Sci. Technol., 2018, 44, 491-497.
[http://dx.doi.org/10.1016/j.jddst.2018.02.010]
[31]
Iglesias-Arteaga, M.A.; Morzycki, J.W. Cephalostatins and ritterazines. Alkaloids: Chemistry and Biology; Knolker, H-J; Elsevier, B.V., Ed.; Amsterdam, 2013, Vol. 72, pp. 153-279.
[32]
Kotoku, N. Creation of readily accessible analogue of cortistatin A as an antitumor drug lead. Yakugaku Zasshi, 2013, 133(8), 867-872.
[http://dx.doi.org/10.1248/yakushi.13-00159] [PMID: 23903226]
[33]
Nitulescu, I.I.; Meyer, S.C.; Wen, Q.J.; Crispino, J.D.; Lemieux, M.E.; Levine, R.L.; Pelish, H.E.; Shair, M.D. Mediator Kinase Phosphorylation of STAT1 S727 Promotes Growth of Neoplasms With JAK-STAT Activation. EBioMedicine, 2017, 26, 112-125.
[http://dx.doi.org/10.1016/j.ebiom.2017.11.013] [PMID: 29239838]
[34]
Poss, Z.C.; Ebmeier, C.C.; Odell, A.T.; Tangpeerachaikul, A.; Lee, T.; Pelish, H.E.; Shair, M.D.; Dowell, R.D.; Old, W.M.; Taatjes, D.J. Identification of mediator kinase substrates in human cells using cortistatin a and quantitative phosphoproteomics. Cell Rep., 2016, 15(2), 436-450.
[http://dx.doi.org/10.1016/j.celrep.2016.03.030] [PMID: 27050516]
[35]
Roel, M.; Rubiolo, J.A.; Guerra-Varela, J.; Silva, S.B.L.; Thomas, O.P.; Cabezas-Sainz, P.; Sánchez, L.; López, R.; Botana, L.M. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model. Oncotarget, 2016, 7(50), 83071-83087.
[http://dx.doi.org/10.18632/oncotarget.13068] [PMID: 27825113 ]
[36]
Bharate, S.B.; Yadav, R.R.; Battula, S.; Vishwakarma, R.A. Meridianins: marine-derived potent kinase inhibitors. Mini Rev. Med. Chem., 2012, 12(7), 618-631.
[http://dx.doi.org/10.2174/138955712800626728] [PMID: 22512550 ]
[37]
Zhidkov, M.E.; Smirnova, P.A.; Tryapkin, O.A.; Kantemirov, A.V.; Khudyakova, Y.V.; Malyarenko, O.S.; Ermakova, S.P.; Grigorchuk, V.P.; Kaune, M.; Amsberg, G.V.; Dyshlovoy, S.A. Total syntheses and preliminary biological evaluation of brominated fascaplysin and reticulatine alkaloids and their analogues. Mar. Drugs, 2019, 17(9), 496-507.
[http://dx.doi.org/10.3390/md17090496] [PMID: 31450717 ]
[38]
Egorov, M.; Delpech, B.; Aubert, G.; Cresteil, T.; Garcia-Alvarez, M.C.; Collin, P.; Marazano, C. A concise formation of N-substituted 3,4-diarylpyrroles--synthesis and cytotoxic activity. Org. Biomol. Chem., 2014, 12(9), 1518-1524.
[http://dx.doi.org/10.1039/C3OB42309C] [PMID: 24448828]
[39]
Ibrahim, S.R.M.; Mohamed, G.A. Ingenine E, a new cytotoxic β-carboline alkaloid from the Indonesian sponge Acanthostrongylophora ingens. J. Asian Nat. Prod. Res., 2017, 19(5), 504-509.
[http://dx.doi.org/10.1080/10286020.2016.1213723] [PMID: 27588456 ]
[40]
Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Harakeh, S.M. Bioactive 2(1H)-Pyrazinones and Diketopiperazine Alkaloids from a Tunicate-Derived Actinomycete Streptomyces sp. Molecules, 2016, 21(9), 1116-1124.
[http://dx.doi.org/10.3390/molecules21091116] [PMID: 27563872 ]
[41]
Sirimangkalakitti, N.; Chamni, S.; Charupant, K.; Chanvorachote, P.; Mori, N.; Saito, N.; Suwanborirux, K. Chemistry of Renieramycins. 15. Synthesis of 22-O-Ester Derivatives of Jorunnamycin A and Their Cytotoxicity against Non-Small-Cell Lung Cancer Cells. J. Nat. Prod., 2016, 79(8), 2089-2093.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00433] [PMID: 27487087 ]
[42]
Ballot, C.; Martoriati, A.; Jendoubi, M.; Buche, S.; Formstecher, P.; Mortier, L.; Kluza, J.; Marchetti, P. Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production. Mar. Drugs, 2014, 12(2), 779-798.
[http://dx.doi.org/10.3390/md12020779] [PMID: 24473175 ]
[43]
Zhang, N.; Wang, D.; Zhu, Y.; Wang, J.; Lin, H. Inhibition effects of lamellarin D on human leukemia K562 cell proliferation and underlying mechanisms. Asian Pac. J. Cancer Prev., 2014, 15(22), 9915-9919.
[http://dx.doi.org/10.7314/APJCP.2014.15.22.9915] [PMID: 25520128]
[44]
Wang, A.; Zhao, Z.; Zheng, X.; Cao, H. Recent research progress in anticancer alkaloid lamellarin n and lamellarin L. Youji Huaxue, 2013, 33(3), 483-491.
[http://dx.doi.org/10.6023/cjoc201209034]
[45]
Theppawong, A.; Ploypradith, P.; Chuawong, P.; Ruchirawat, S.; Chittchang, M. Facile and Divergent Synthesis of Lamellarins and Lactam-Containing Derivatives with Improved Drug Likeness and Biological Activities. Chem. Asian J., 2015, 10(12), 2631-2650.
[http://dx.doi.org/10.1002/asia.201500611] [PMID: 26183429 ]
[46]
Wang, W.; Nijampatnam, B.; Velu, S.E.; Zhang, R. Discovery and Development of Synthetic Tricyclic Pyrroloquinone (TPQ) Alkaloid Analogs for Human Cancer Therapy. Front. Chem. Sci. Eng., 2016, 10(1), 1-15.
[http://dx.doi.org/10.1007/s11705-016-1562-6]
[47]
Zhang, X.; Xu, H.; Zhang, X.; Voruganti, S.; Murugesan, S.; Nadkarni, D.H.; Velu, S.E.; Wang, M.H.; Wang, W.; Zhang, R. Preclinical evaluation of anticancer efficacy and pharmacological properties of FBA-TPQ, a novel synthetic makaluvamine analog. Mar. Drugs, 2012, 10(5), 1138-1155.
[http://dx.doi.org/10.3390/md10051138] [PMID: 22822362 ]
[48]
Dyshlovoy, S.A.; Venz, S.; Hauschild, J.; Tabakmakher, K.M.; Otte, K.; Madanchi, R.; Walther, R.; Guzii, A.G.; Makarieva, T.N.; Shubina, L.K.; Fedorov, S.N.; Stonik, V.A.; Bokemeyer, C.; Balabanov, S.; Honecker, F.V.; Amsberg, G. Anti-migratory activity of marine alkaloid monanchocidin A - proteomics-based discovery and confirmation. Proteomics, 2016, 16(10), 1590-1603.
[http://dx.doi.org/10.1002/pmic.201500334] [PMID: 27001414 ]
[49]
Dyshlovoy, S.A.; Tabakmakher, K.M.; Hauschild, J.; Shchekaleva, R.K.; Otte, K.; Guzii, A.G.; Makarieva, T.N.; Kudryashova, E.K.; Fedorov, S.N.; Shubina, L.K.; Bokemeyer, C.; Honecker, F.; Stonik, V.A.; von Amsberg, G. Guanidine alkaloids from the marine sponge monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro. Mar. Drugs, 2016, 14(7), 133-149.
[http://dx.doi.org/10.3390/md14070133] [PMID: 27428983 ]
[50]
Zhou, Q.; Abraham, A.D.; Li, L.; Babalmorad, A.; Bagby, S.; Arcaroli, J.J.; Hansen, R.J.; Valeriote, F.A.; Gustafson, D.L.; Schaack, J.; Messersmith, W.A.; LaBarbera, D.V. Topoisomerase IIα mediates TCF-dependent epithelial-mesenchymal transition in colon cancer. Oncogene, 2016, 35(38), 4990-4999.
[http://dx.doi.org/10.1038/onc.2016.29] [PMID: 26947016 ]
[51]
Li, L.; Abraham, A.D.; Zhou, Q.; Ali, H.; O’Brien, J.V.; Hamill, B.D.; Arcaroli, J.J.; Messersmith, W.A.; LaBarbera, D.V. An improved high yield total synthesis and cytotoxicity study of the marine alkaloid neoamphimedine: an ATP-competitive inhibitor of topoisomerase IIα and potent anticancer agent. Mar. Drugs, 2014, 12(9), 4833-4850.
[http://dx.doi.org/10.3390/md12094833] [PMID: 25244109 ]
[52]
Carbone, A.; Parrino, B.; Barraja, P.; Spanò, V.; Cirrincione, G.; Diana, P.; Maier, A.; Kelter, G.; Fiebig, H.H. Synthesis and antiproliferative activity of 2,5-bis(3′-indolyl)pyrroles, analogues of the marine alkaloid nortopsentin. Mar. Drugs, 2013, 11(3), 643-654.
[http://dx.doi.org/10.3390/md11030643] [PMID: 23455514 ]
[53]
Parrino, B.; Carbone, A.; Di Vita, G.; Ciancimino, C.; Attanzio, A.; Spanò, V.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Livrea, M.A.; Diana, P.; Cirrincione, G. 3-[4-(1H-indol-3-yl)-1,3-thiazol-2-yl]-1H-pyrrolo[2,3-b]pyridines, nortopsentin analogues with antiproliferative activity. Mar. Drugs, 2015, 13(4), 1901-1924.
[http://dx.doi.org/10.3390/md13041901] [PMID: 25854642]
[54]
Lacerda, R.B. Bromopyrrole Marine Alkaloids. Rev. Virtual Química, 2015, 7(2), 713-729.
[http://dx.doi.org/10.5935/1984-6835.20150032]
[55]
Dyson, L.; Wright, A.D.; Young, K.A.; Sakoff, J.A.; McCluskey, A. Synthesis and anticancer activity of focused compound libraries from the natural product lead, oroidin. Bioorg. Med. Chem., 2014, 22(5), 1690-1699.
[http://dx.doi.org/10.1016/j.bmc.2014.01.021] [PMID: 24508308 ]
[56]
Liu, Q.Y.; Zhou, T.; Zhao, Y.Y.; Chen, L.; Gong, M.W.; Xia, Q.W.; Ying, M.G.; Zheng, Q.H.; Zhang, Q.Q. Antitumor effects and related mechanisms of penicitrinine a, a novel alkaloid with a unique spiro skeleton from the marine fungus penicillium citrinum. Mar. Drugs, 2015, 13(8), 4733-4753.
[http://dx.doi.org/10.3390/md13084733] [PMID: 26264002 ]
[57]
Vitale, R.M.; Gatti, M.; Carbone, M.; Barbieri, F.; Felicità, V.; Gavagnin, M.; Florio, T.; Amodeo, P. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity. ACS Chem. Biol., 2013, 8(12), 2762-2770.
[http://dx.doi.org/10.1021/cb400521b] [PMID: 24102412 ]
[58]
Buchanan, J.C.; Petersen, B.P.; Chamberland, S. Concise total synthesis of phidianidine A and B. Tetrahedron Lett., 2013, 54(45), 6002-6004.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.063]
[59]
Sunassee, S.N.; Ransom, T.; Henrich, C.J.; Beutler, J.A.; Covell, D.G.; McMahon, J.B.; Gustafson, K.R. Steroidal alkaloids from the marine sponge Corticium niger that inhibit growth of human colon carcinoma cells. J. Nat. Prod., 2014, 77(11), 2475-2480.
[http://dx.doi.org/10.1021/np500556t] [PMID: 25338277 ]
[60]
Martín, M.J.; Coello, L.; Fernández, R.; Reyes, F.; Rodríguez, A.; Murcia, C.; Garranzo, M.; Mateo, C.; Sánchez-Sancho, F.; Bueno, S.; de Eguilior, C.; Francesch, A.; Munt, S.; Cuevas, C. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J. Am. Chem. Soc., 2013, 135(27), 10164-10171.
[http://dx.doi.org/10.1021/ja404578u] [PMID: 23750450 ]
[61]
Pereira, R.B.; Evdokimov, N.M.; Lefranc, F.; Valentão, P.; Kornienko, A.; Pereira, D.M.; Andrade, P.B.; Gomes, N.G.M. Marine-derived anticancer agents: clinical benefits, innovative mechanisms, and new targets. Mar. Drugs, 2019, 17(6), 329-349.
[http://dx.doi.org/10.3390/md17060329] [PMID: 31159480 ]
[62]
Lee, Y.J.; Han, S.; Lee, H.S.; Kang, J.S.; Yun, J.; Sim, C.J.; Shin, H.J.; Lee, J.S. Cytotoxic psammaplysin analogues from a Suberea sp. marine sponge and the role of the spirooxepinisoxazoline in their activity. J. Nat. Prod., 2013, 76(9), 1731-1736.
[http://dx.doi.org/10.1021/np400448y] [PMID: 23964644]
[63]
Song, Y.; Hu, L.; Chen, R.; Chen, X. Research progress in synthesis of renieramycin-type alkaloids. Youji Huaxue, 2015, 35(8), 1627-1640.
[http://dx.doi.org/10.6023/cjoc201504003]
[64]
Siengalewicz, P.; Rinner, U.; Mulzer, J. Recent progress in the total synthesis of naphthyridinomycin and lemonomycin tetrahydroisoquinoline antitumor antibiotics (TAAs). Chem. Soc. Rev., 2008, 37(12), 2676-2690.
[http://dx.doi.org/10.1039/b804167a] [PMID: 19020681 ]
[65]
Cheun-Arom, T.; Chanvorachote, P.; Sirimangkalakitti, N.; Chuanasa, T.; Saito, N.; Abe, I.; Suwanborirux, K. Replacement of a quinone by a 5-O-acetylhydroquinone abolishes the accidental necrosis inducing effect while preserving the apoptosis-inducing effect of renieramycin M on lung cancer cells. J. Nat. Prod., 2013, 76(8), 1468-1474.
[http://dx.doi.org/10.1021/np400277m] [PMID: 23876104 ]
[66]
Pinkhien, T.; Maiuthed, A.; Chamni, S.; Suwanborirux, K.; Saito, N.; Chanvorachote, P. Bishydroquinone renieramycin m induces apoptosis of human lung cancer cells through a mitochondria-dependent pathway. Anticancer Res., 2016, 36(12), 6327-6333.
[http://dx.doi.org/10.21873/anticanres.11229] [PMID: 27919953 ]
[67]
Medellin, D.C.; Zhou, Q.; Scott, R.; Hill, R.M.; Frail, S.K.; Dasari, R.; Ontiveros, S.J.; Pelly, S.C.; van Otterlo, W.A.L.; Betancourt, T.; Shuster, C.B.; Hamel, E.; Bai, R.; LaBarbera, D.V.; Rogelj, S.; Frolova, L.V.; Kornienko, A. Novel microtubule-targeting 7-deazahypoxanthines derived from marine alkaloid rigidins with potent in vitro and in vivo anticancer activities. J. Med. Chem., 2016, 59(1), 480-485.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01426] [PMID: 26641132 ]
[68]
Scott, R.; Karki, M.; Reisenauer, M.R.; Rodrigues, R.; Dasari, R.; Smith, W.R.; Pelly, S.C.; van Otterlo, W.A.L.; Shuster, C.B.; Rogelj, S.; Magedov, I.V.; Frolova, L.V.; Kornienko, A. Synthetic and biological studies of tubulin targeting c2-substituted 7-deazahypoxanthines derived from marine alkaloid rigidins. ChemMedChem, 2014, 9(7), 1428-1435.
[http://dx.doi.org/10.1002/cmdc.201300532] [PMID: 24644272]
[69]
Frolova, L.V.; Magedov, I.V.; Romero, A.E.; Karki, M.; Otero, I.; Hayden, K.; Evdokimov, N.M.; Banuls, L.M.Y.; Rastogi, S.K.; Smith, W.R.; Lu, S.L.; Kiss, R.; Shuster, C.B.; Hamel, E.; Betancourt, T.; Rogelj, S.; Kornienko, A. Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from the rigidin family of marine alkaloids. J. Med. Chem., 2013, 56(17), 6886-6900.
[http://dx.doi.org/10.1021/jm400711t] [PMID: 23927793 ]
[70]
Fong, H.K.H.; Copp, B.R. Synthesis, DNA binding and antitumor evaluation of styelsamine and cystodytin analogues. Mar. Drugs, 2013, 11(2), 274-299.
[http://dx.doi.org/10.3390/md11020274] [PMID: 23358307 ]
[71]
Hernando, E.; Soto-Cerrato, V.; Cortés-Arroyo, S.; Pérez-Tomás, R.; Quesada, R. Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs. Org. Biomol. Chem., 2014, 12(11), 1771-1778.
[http://dx.doi.org/10.1039/C3OB42341G] [PMID: 24500335 ]
[72]
Monk, B.J.; Dalton, H.; Benjamin, I.; Tanović, A. Trabectedin as a new chemotherapy option in the treatment of relapsed platinum sensitive ovarian cancer. Curr. Pharm. Des., 2012, 18(25), 3754-3769.
[http://dx.doi.org/10.2174/138161212802002814] [PMID: 22591421 ]
[73]
Romano, M.; Frapolli, R.; Zangarini, M.; Bello, E.; Porcu, L.; Galmarini, C.M.; García-Fernández, L.F.; Cuevas, C.; Allavena, P.; Erba, E.; D’Incalci, M. Comparison of in vitro and in vivo biological effects of trabectedin, lurbinectedin (PM01183) and Zalypsis® (PM00104). Int. J. Cancer, 2013, 133(9), 2024-2033.
[http://dx.doi.org/10.1002/ijc.28213] [PMID: 23588839 ]
[74]
Nair, V.; Schuhmann, I.; Anke, H.; Kelter, G.; Fiebig, H.H.; Helmke, E.; Laatsch, H. Marine Bacteria, XLVII - Psychrotolerant bacteria from extreme antarctic habitats as producers of rare bis- and trisindole alkaloids. Planta Med., 2016, 82(9-10), 910-918.
[http://dx.doi.org/10.1055/s-0042-108204] [PMID: 27286331 ]
[75]
Canals, A.; Arribas-Bosacoma, R.; Albericio, F.; Álvarez, M.; Aymamí, J.; Coll, M. Intercalative DNA binding of the marine anticancer drug variolin B. Sci. Rep., 2017, 7, 39680-39684.
[http://dx.doi.org/10.1038/srep39680] [PMID: 28051169 ]
[76]
Nijampatnam, B.; Dutta, S.; Velu, S.E. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin. Chin. J. Nat. Med., 2015, 13(8), 561-577.
[http://dx.doi.org/10.1016/S1875-5364(15)30052-2] [PMID: 26253489 ]
[77]
Jiang, Q.W.; Chen, M.W.; Cheng, K.J.; Yu, P.Z.; Wei, X.; Shi, Z. Therapeutic potential of steroidal alkaloids in cancer and other diseases. Med. Res. Rev., 2016, 36(1), 119-143.
[http://dx.doi.org/10.1002/med.21346] [PMID: 25820039 ]
[78]
Imperatore, C.; Aiello, A.; D’Aniello, F.; Senese, M.; Menna, M. Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development. Molecules, 2014, 19(12), 20391-20423.
[http://dx.doi.org/10.3390/molecules191220391] [PMID: 25490431 ]
[79]
Byju, K.; Anuradha, V.; Vasundhara, G.; Nair, S.M.; Kumar, N.C. In vitro and in silico studies on the anticancer and apoptosis-inducing activities of the sterols identified from the soft coral, subergorgia reticulata. Pharmacogn. Mag., 2014, 10(37)(Suppl. 1), S65-S71.
[http://dx.doi.org/10.4103/0973-1296.127345] [PMID: 24914311 ]
[80]
Chao, C.H.; Wu, Y.C.; Wen, Z.H.; Sheu, J.H. Steroidal carboxylic acids from soft coral Paraminabea acronocephala. Mar. Drugs, 2013, 11(1), 136-145.
[http://dx.doi.org/10.3390/md11010136] [PMID: 23344155 ]
[81]
Fang, H-Y.; Hsu, C-H.; Chao, C-H.; Wen, Z-H.; Wu, Y-C.; Dai, C-F.; Sheu, J-H. Cytotoxic and anti-inflammatory metabolites from the soft coral Scleronephthya gracillimum. Mar. Drugs, 2013, 11(6), 1853-1865.
[http://dx.doi.org/10.3390/md11061853] [PMID: 23760015 ]
[82]
Kuo, C.Y.; Juan, Y.S.; Lu, M.C.; Chiang, M.Y.; Dai, C.F.; Wu, Y.C.; Sung, P.J. Pregnane-type steroids from the Formosan soft coral Scleronephthya flexilis. Int. J. Mol. Sci., 2014, 15(6), 10136-10149.
[http://dx.doi.org/10.3390/ijms150610136] [PMID: 24914763 ]
[83]
Kim, Y-S.; Li, X-F.; Kang, K-H.; Ryu, B.; Kim, S-K. Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells. BMB Rep., 2014, 47(8), 433-438.
[http://dx.doi.org/10.5483/BMBRep.2014.47.8.153] [PMID: 24286323 ]
[84]
Hsiao, T-H.; Cheng, C-H.; Wu, T-Y.; Lu, M-C.; Chen, W-F.; Wen, Z-H.; Dai, C-F.; Wu, Y-C.; Sung, P-J. New cembranoid diterpenes from the cultured octocoral Nephthea columnaris. Molecules, 2015, 20(7), 13205-13215.
[http://dx.doi.org/10.3390/molecules200713205] [PMID: 26197309 ]
[85]
Guo, J.K.; Chiang, C.Y.; Lu, M.C.; Chang, W.B.; Su, J.H. 4-Methylenesterols from a sponge Theonella swinhoei. Mar. Drugs, 2012, 10(7), 1536-1544.
[http://dx.doi.org/10.3390/md10071536] [PMID: 22851924]
[86]
Moritz, M.I.G.; Marostica, L.L.; Bianco, É.M.; Almeida, M.T.R.; Carraro, J.L.; Cabrera, G.M.; Palermo, J.A.; Simões, C.M.O.; Schenkel, E.P. Polyoxygenated steroids from the octocoral Leptogorgia punicea and in vitro evaluation of their cytotoxic activity. Mar. Drugs, 2014, 12(12), 5864-5880.
[http://dx.doi.org/10.3390/md12125864] [PMID: 25486111 ]
[87]
Elbagory, A.M.; Meyer, M.; Ali, A.H.A.M.; Ameer, F.; Parker-Nance, S.; Benito, M.T.; Doyagüez, E.G.; Jimeno, M.L.; Hussein, A.A. New polyhydroxylated sterols from Palythoa tuberculosa and their apoptotic activity in cancer cells. Steroids, 2015, 101, 110-115.
[http://dx.doi.org/10.1016/j.steroids.2015.06.009] [PMID: 26095205 ]
[88]
Mun, B.; Wang, W.; Kim, H.; Hahn, D.; Yang, I.; Won, D.H.; Kim, E.H.; Lee, J.; Han, C.; Kim, H.; Ekins, M.; Nam, S.J.; Choi, H.; Kang, H. Cytotoxic 5α,8α-epidioxy sterols from the marine sponge Monanchora sp. Arch. Pharm. Res., 2015, 38(1), 18-25.
[http://dx.doi.org/10.1007/s12272-014-0480-8] [PMID: 25231340 ]
[89]
Cui, J.; Qi, B.; Gan, C.; Liu, Z.; Huang, H.; Lin, Q.; Zhao, D.; Huang, Y. Synthesis and in vitro antiproliferative evaluation of some B-norcholesteryl Benzimidazole and Benzothiazole derivatives. Mar. Drugs, 2015, 13(4), 2488-2504.
[http://dx.doi.org/10.3390/md13042488] [PMID: 25913705 ]
[90]
Caamal-Fuentes, E.; Moo-Puc, R.; Freile-Pelegrín, Y.; Robledo, D. Cytotoxic and antiproliferative constituents from Dictyota ciliolata, Padina sanctae-crucis and Turbinaria tricostata. Pharm. Biol., 2014, 52(10), 1244-1248.
[http://dx.doi.org/10.3109/13880209.2014.886273] [PMID: 24863279 ]
[91]
Vaikundamoorthy, R.; Sundaramoorthy, R.; Krishnamoorthy, V.; Vilwanathan, R.; Rajendran, R. Marine steroid derived from Acropora formosa enhances mitochondrial-mediated apoptosis in non-small cell lung cancer cells. Tumour Biol., 2016, 37(8), 10517-10531.
[http://dx.doi.org/10.1007/s13277-016-4947-8] [PMID: 26852038]
[92]
Pailee, P.; Mahidol, C.; Ruchirawat, S.; Prachyawarakorn, V. Sterols from thai marine sponge petrosia (Strongylophora) sp. and their cytotoxicity. Mar. Drugs, 2017, 15(3), 54-65.
[http://dx.doi.org/10.3390/md15030054] [PMID: 28241489]
[93]
Huang, C-Y.; Chang, C-W.; Tseng, Y-J.; Lee, J.; Sung, P-J.; Su, J-H.; Hwang, T-L.; Dai, C-F.; Wang, H-C.; Sheu, J-H. Bioactive steroids from the formosan soft coral umbellulifera petasites. Mar. Drugs, 2016, 14(10), 180-190.
[http://dx.doi.org/10.3390/md14100180] [PMID: 27727166 ]
[94]
Ngoc, N.T.; Huong, P.T.; Thanh, N.V.; Chi, N.T.; Dang, N.H.; Cuong, N.X.; Nam, N.H.; Thung, D.C.; Kiem, P.V.; Minh, C.V. Cytotoxic Steroids from the Vietnamese Soft Coral Sinularia conferta. Chem. Pharm. Bull. (Tokyo), 2017, 65(3), 300-305.
[http://dx.doi.org/10.1248/cpb.c16-00881] [PMID: 28077809 ]
[95]
Ngoc, N.T.; Hanh, T.T.H.; Thanh, N.V.; Thao, D.T.; Cuong, N.X.; Nam, N.H.; Thung, D.C.; Kiem, P.V.; Minh, C.V. Cytotoxic Steroids from the Vietnamese Soft Coral Sinularia leptoclados. Chem. Pharm. Bull. (Tokyo), 2017, 65(6), 593-597.
[http://dx.doi.org/10.1248/cpb.c17-00129] [PMID: 28320975]
[96]
Ghannadi, A.; Shabani, L.; Yegdaneh, A. Cytotoxic, antioxidant and phytochemical analysis of Gracilaria species from Persian Gulf. Adv. Biomed. Res., 2016, 5(1), 139-147.
[http://dx.doi.org/10.4103/2277-9175.187373] [PMID: 27656608 ]
[97]
Elsebai, M.F.; Ghabbour, H.A.; Mehiri, M.; McPhee, D.J. Unusual nitrogenous phenalenone derivatives from the marine-derived fungus coniothyrium cereale. Molecules, 2016, 21(2), 178-190.
[http://dx.doi.org/10.3390/molecules21020178] [PMID: 26840293]
[98]
Fuwa, H.; Okuaki, Y.; Yamagata, N.; Sasaki, M. Total synthesis, stereochemical reassignment, and biological evaluation of (-)-lyngbyaloside B. Angew. Chem. Int. Ed. Engl., 2015, 54(3), 868-873.
[http://dx.doi.org/10.1002/anie.201409629] [PMID: 25393532 ]
[99]
Lin, A-S.; Engel, S.; Smith, B.A.; Fairchild, C.R.; Aalbersberg, W.; Hay, M.E.; Kubanek, J. Structure and biological evaluation of novel cytotoxic sterol glycosides from the marine red alga Peyssonnelia sp. Bioorg. Med. Chem., 2010, 18(23), 8264-8269.
[http://dx.doi.org/10.1016/j.bmc.2010.10.010] [PMID: 21036050 ]
[100]
Toume, K.; Tsukahara, K.; Ito, H.; Arai, M.A.; Ishibashi, M. Chromomycins A2 and A3 from marine actinomycetes with TRAIL resistance-overcoming and Wnt signal inhibitory activities. Mar. Drugs, 2014, 12(6), 3466-3476.
[http://dx.doi.org/10.3390/md12063466] [PMID: 24905484 ]
[101]
Guimarães, L.A.; Jimenez, P.C. Sousa, Tda.S.; Freitas, H.P.S.; Rocha, D.D.; Wilke, D.V.; Martín, J.; Reyes, F.; Deusdênia Loiola Pessoa, O.; Costa-Lotufo, L.V. Chromomycin A2 induces autophagy in melanoma cells. Mar. Drugs, 2014, 12(12), 5839-5855.
[http://dx.doi.org/10.3390/md12125839] [PMID: 25486109 ]
[102]
Song, Y.; Liu, G.; Li, J.; Huang, H.; Zhang, X.; Zhang, H.; Ju, J. Cytotoxic and antibacterial angucycline- and prodigiosin-analogues from the deep-sea derived Streptomyces sp. SCSIO 11594. Mar. Drugs, 2015, 13(3), 1304-1316.
[http://dx.doi.org/10.3390/md13031304] [PMID: 25786061 ]
[103]
Niu, T-T.; Zhang, D-S.; Chen, H-M.; Yan, X-J. Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified λ-carrageenan oligosaccharides. Carbohydr. Polym., 2015, 125, 76-84.
[http://dx.doi.org/10.1016/j.carbpol.2015.02.069] [PMID: 25857962 ]
[104]
Cuong, N.X.; Vien, T.; Hanh, T.T.; Thao, N.P.; Thao, T.; Thanh, N.V.; Nam, N.H.; Thung, C.; Kiem, P.V.; Minh, C.V. Cytotoxic triterpene saponins from Cercodemas anceps. Bioorg. Med. Chem. Lett., 2015, 25(16), 3151-3156.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.005] [PMID: 26099533]
[105]
Yun, S-H.; Park, E-S.; Shin, S-W.; Ju, M-H.; Han, J-Y.; Jeong, J-S.; Kim, S-H.; Stonik, V.A.; Kwak, J-Y.; Park, J-I. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, stichoposide D inhibits growth of leukemia xenografts. Oncotarget, 2015, 6(29), 27596-27612.
[http://dx.doi.org/10.18632/oncotarget.4820] [PMID: 26318294 ]
[106]
Reunov, A.A.; Reunov, A.V.; Pimenova, E.A.; Reunova, Y.A.; Menchinskaya, E.S.; Lapshina, L.A.; Aminin, D.L. Cucumarioside A2-2 stimulates apoptotic necrosis in Ehrlich ascites carcinoma cells. Dokl. Biol. Sci., 2015, 462(1), 161-163.
[http://dx.doi.org/10.1134/S0012496615020040] [PMID: 26164340 ]
[107]
Dyshlovoy, S.A.; Madanchi, R.; Hauschild, J.; Otte, K.; Alsdorf, W.H.; Schumacher, U.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Honecker, F.; Stonik, V.A.; Bokemeyer, C.; von Amsberg, G. The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer, 2017, 17(1), 93-102.
[http://dx.doi.org/10.1186/s12885-017-3085-z] [PMID: 28143426 ]
[108]
Park, J-I.; Bae, H-R.; Kim, C.G.; Stonik, V.A.; Kwak, J-Y. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers. Front Chem., 2014, 2, 77-90.
[http://dx.doi.org/10.3389/fchem.2014.00077] [PMID: 25250309 ]
[109]
Jansen, D.J.; Shenvi, R.A. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med. Chem., 2014, 6(10), 1127-1148.
[http://dx.doi.org/10.4155/fmc.14.71] [PMID: 25078134]
[110]
Sharifi, S.; Ghavam Mostafavi, P.; Mashinchian Moradi, A.; Givianrad, M.H.; Niknejad, H. Inducing apoptosis of cancer cells using sea pen Virgularia gustaviana extract which is comparable to cembrane diterpene sarcophine. Iran. J. Pharm. Res., 2018, 17(2), 640-652.
[PMID: 29881421]
[111]
Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci., 2018, 19(11), 3533-3570.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952 ]
[112]
Su, J-H.; Chang, W-B.; Chen, H-M.; El-Shazly, M.; Du, Y-C.; Kung, T-H.; Chen, Y-C.; Sung, P-J.; Ho, Y-S.; Kuo, F-W.; Lu, M-C. 10-acetylirciformonin B, a sponge furanoterpenoid, induces DNA damage and apoptosis in leukemia cells. Molecules, 2012, 17(10), 11839-11848.
[http://dx.doi.org/10.3390/molecules171011839] [PMID: 23047484]
[113]
Shih, H-C.; El-Shazly, M.; Juan, Y-S.; Chang, C-Y.; Su, J-H.; Chen, Y-C.; Shih, S-P.; Chen, H-M.; Wu, Y-C.; Lu, M-C. Cracking the cytotoxicity code: apoptotic induction of 10-acetylirciformonin B is mediated through ROS generation and mitochondrial dysfunction. Mar. Drugs, 2014, 12(5), 3072-3090.
[http://dx.doi.org/10.3390/md12053072] [PMID: 24857964 ]
[114]
Raimundo, I.; Silva, S.G.; Costa, R.; Keller-Costa, T. Bioactive secondary metabolites from octocoral-associated microbes-new chances for blue growth. Mar. Drugs, 2018, 16(12), 485-509.
[http://dx.doi.org/10.3390/md16120485] [PMID: 30518125 ]
[115]
Li, H.J.; Jiang, W.H.; Liang, W.L.; Huang, J.X.; Mo, Y.F.; Ding, Y.Q.; Lam, C.K.; Qian, X.J.; Zhu, X.F.; Lan, W.J. Induced marine fungus Chondrostereum sp. as a means of producing new sesquiterpenoids chondrosterins I and J by using glycerol as the carbon source. Mar. Drugs, 2014, 12(1), 167-175.
[http://dx.doi.org/10.3390/md12010167] [PMID: 24402176]
[116]
Li, H-J.; Xie, Y-L.; Xie, Z-L.; Chen, Y.; Lam, C-K.; Lan, W-J. Chondrosterins A-E, triquinane-type sesquiterpenoids from soft coral-associated fungus Chondrostereum sp. Mar. Drugs, 2012, 10(3), 627-638.
[http://dx.doi.org/10.3390/md10030627] [PMID: 22611359]
[117]
Li, H.J.; Chen, T.; Xie, Y.L.; Chen, W.D.; Zhu, X.F.; Lan, W.J. Isolation and structural elucidation of chondrosterins F-H from the marine fungus Chondrostereum sp. Mar. Drugs, 2013, 11(2), 551-558.
[http://dx.doi.org/10.3390/md11020551] [PMID: 23434797]
[118]
Huang, L.; Lan, W.J.; Deng, R.; Feng, G.K.; Xu, Q.Y.; Hu, Z.Y.; Zhu, X.F.; Li, H.J. Additional new cytotoxic triquinane-type sesquiterpenoids chondrosterins k-m from the marine fungus Chondrostereum sp. Mar. Drugs, 2016, 14(9), 157-165.
[http://dx.doi.org/10.3390/md14090157] [PMID: 27571085]
[119]
Fedorov, S.N.; Shubina, L.K.; Bode, A.M.; Stonik, V.A.; Dong, Z. Dactylone inhibits epidermal growth factor-induced transformation and phenotype expression of human cancer cells and induces G1-S arrest and apoptosis. Cancer Res., 2007, 67(12), 5914-5920.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3723] [PMID: 17575161 ]
[120]
Burckle, A.J.; Vasilev, V.H.; Burns, N.Z. A Unified approach for the enantioselective synthesis of the brominated chamigrene sesquiterpenes. Angew. Chem. Int. Ed. Engl., 2016, 55(38), 11476-11479.
[http://dx.doi.org/10.1002/anie.201605722] [PMID: 27506430]
[121]
Mao, S.C.; Guo, Y.W. Sesquiterpenes from Chinese Red Alga Laurencia Okamurai. Chin. J. Nat. Med., 2010, 8(5), 321-325.
[http://dx.doi.org/10.3724/SP.J.1009.2010.00321]
[122]
Zaleta-Pinet, D.A.; Holland, I.P.; Muñoz-Ochoa, M.; Murillo-Alvarez, J.I.; Sakoff, J.A.; van Altena, I.A.; McCluskey, A. Cytotoxic compounds from Laurencia pacifica. Org. Med. Chem. Lett., 2014, 4(1), 8-14.
[http://dx.doi.org/10.1186/s13588-014-0008-8] [PMID: 26548986 ]
[123]
Pec, M.K.; Aguirre, A.; Moser-Thier, K.; Fernández, J.J.; Souto, M.L.; Dorta, J.; Diáz-González, F.; Villar, J. Induction of apoptosis in estrogen dependent and independent breast cancer cells by the marine terpenoid dehydrothyrsiferol. Biochem. Pharmacol., 2003, 65(9), 1451-1461.
[http://dx.doi.org/10.1016/S0006-2952(03)00123-0] [PMID: 12732357]
[124]
Barcellos Marini, M.; Rodrigues de Freitas, W.; Lacerda da Silva Machado, F.; Correa Ramos Leal, I.; Ribeiro Soares, A.; Masahiko Kanashiro, M.; Frazão Muzitano, M. Cytotoxic activity of halogenated sesquiterpenes from Laurencia dendroidea. Phytother. Res., 2018, 32(6), 1119-1125.
[http://dx.doi.org/10.1002/ptr.6052] [PMID: 29480520]
[125]
Peters, T.L.; Tillotson, J.; Yeomans, A.M.; Wilmore, S.; Lemm, E.; Jiménez-Romero, C.; Amador, L.A.; Li, L.; Amin, A.D.; Pongtornpipat, P.; Zerio, C.J.; Ambrose, A.J.; Paine-Murrieta, G.; Greninger, P.; Vega, F.; Benes, C.H.; Packham, G.; Rodríguez, A.D.; Chapman, E.; Schatz, J.H. Target-based screening against eIF4A1 reveals the marine natural product elatol as a novel inhibitor of translation initiation with in vivo antitumor activity. Clin. Cancer Res., 2018, 24(17), 4256-4270.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3645] [PMID: 29844128]
[126]
Almeida, T.P.; Ferreira, J.; Vettorazzi, A.; Azqueta, A.; Rocha, E.; Ramos, A.A. Cytotoxic activity of fucoxanthin, alone and in combination with the cancer drugs imatinib and doxorubicin, in CML cell lines. Environ. Toxicol. Pharmacol., 2018, 59, 24-33.
[http://dx.doi.org/10.1016/j.etap.2018.02.006] [PMID: 29518678 ]
[127]
Yousefi, M.K.; Hashtroudi, M.S.; Moradi, A.M.; Ghasempour, A.R. In vitro investigating of anticancer activity of focuxanthin from marine brown seaweed species. Glob. J. Environemntal Sci. Manag., 2018, 4(1), 81-90.
[128]
Pádua, D.; Rocha, E.; Gargiulo, D.; Ramos, A.A. Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem. Lett., 2015, 14, 91-98.
[http://dx.doi.org/10.1016/j.phytol.2015.09.007]
[129]
Kumar, S.R.; Hosokawa, M.; Miyashita, K. Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar. Drugs, 2013, 11(12), 5130-5147.
[http://dx.doi.org/10.3390/md11125130] [PMID: 24351910]
[130]
Lopes-Costa, E.; Abreu, M.; Gargiulo, D.; Rocha, E.; Ramos, A.A. Anticancer effects of seaweed compounds fucoxanthin and phloroglucinol, alone and in combination with 5-fluorouracil in colon cells. J. Toxicol. Environ. Health A, 2017, 80(13-15), 776-787.
[http://dx.doi.org/10.1080/15287394.2017.1357297] [PMID: 28850007]
[131]
Liu, C.L.; Lim, Y.P.; Hu, M.L. Fucoxanthin enhances cisplatin-induced cytotoxicity via NFκB-mediated pathway and downregulates DNA repair gene expression in human hepatoma HepG2 cells. Mar. Drugs, 2013, 11(1), 50-66.
[http://dx.doi.org/10.3390/md11010050] [PMID: 23299493 ]
[132]
Andrianasolo, E.H.; France, D.; Cornell-Kennon, S.; Gerwick, W.H. DNA methyl transferase inhibiting halogenated monoterpenes from the Madagascar red marine alga Portieria hornemannii. J. Nat. Prod., 2006, 69(4), 576-579.
[http://dx.doi.org/10.1021/np0503956] [PMID: 16643029 ]
[133]
Fuller, R.W.; Cardellina, J.H., II; Kato, Y.; Brinen, L.S.; Clardy, J.; Snader, K.M.; Boyd, M.R. A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J. Med. Chem., 1992, 35(16), 3007-3011.
[http://dx.doi.org/10.1021/jm00094a012] [PMID: 1501227 ]
[134]
Braddock, D.C.; Gao, A.X.; White, A.J.P.; Whyte, M. Studies towards the synthesis of halomon: asymmetric hexafunctionalisation of myrcene. Chem. Commun. (Camb.), 2014, 50(89), 13725-13728.
[http://dx.doi.org/10.1039/C4CC06234E] [PMID: 25249474 ]
[135]
Lee, M.G.; Liu, Y.C.; Lee, Y.L.; El-Shazly, M.; Lai, K.H.; Shih, S.P.; Ke, S.C.; Hong, M.C.; Du, Y.C.; Yang, J.C.; Sung, P.J.; Wen, Z.H.; Lu, M.C. Heteronemin, a marine sesterterpenoid-type metabolite, induces apoptosis in prostate lncap cells via oxidative and er stress combined with the inhibition of topoisomerase II and Hsp90. Mar. Drugs, 2018, 16(6), 204-227.
[http://dx.doi.org/10.3390/md16060204] [PMID: 29890785 ]
[136]
Wu, J.C.; Wang, C.T.; Hung, H.C.; Wu, W.J.; Wu, D.C.; Chang, M.C.; Sung, P.J.; Chou, Y.W.; Wen, Z.H.; Tai, M.H. Heteronemin is a novel c-Met/STAT3 inhibitor against advanced prostate cancer cells. Prostate, 2016, 76(16), 1469-1483.
[http://dx.doi.org/10.1002/pros.23230] [PMID: 27416770 ]
[137]
Chen, Y.C.; Lu, M.C.; El-Shazly, M.; Lai, K.H.; Wu, T.Y.; Hsu, Y.M.; Lee, Y.L.; Liu, Y.C. Breaking down leukemia walls: Heteronemin, a sesterterpene derivative, induces apoptosis in leukemia Molt4 cells through oxidative stress, mitochondrial dysfunction and induction of talin expression. Mar. Drugs, 2018, 16(6), 212-233.
[http://dx.doi.org/10.3390/md16060212] [PMID: 29914195 ]
[138]
Yang, F.; Chen, W-D.; Deng, R.; Li, D-D.; Wu, K-W.; Feng, G-K.; Li, H-J.; Zhu, X-F.; Hirsutanol, A. Hirsutanol A induces apoptosis and autophagy via reactive oxygen species accumulation in breast cancer MCF-7 cells. J. Pharmacol. Sci., 2012, 119(3), 214-220.
[http://dx.doi.org/10.1254/jphs.11235FP] [PMID: 22786562 ]
[139]
Yang, F.; Chen, W.D.; Deng, R.; Zhang, H.; Tang, J.; Wu, K.W.; Li, D.D.; Feng, G.K.; Lan, W.J.; Li, H.J.; Zhu, X.F. Hirsutanol A, a novel sesquiterpene compound from fungus Chondrostereum sp., induces apoptosis and inhibits tumor growth through mitochondrial-independent ROS production: hirsutanol A inhibits tumor growth through ROS production. J. Transl. Med., 2013, 11(1), 32-41.
[http://dx.doi.org/10.1186/1479-5876-11-32] [PMID: 23394457]
[140]
Tarhouni-Jabberi, S.; Zakraoui, O.; Ioannou, E.; Riahi-Chebbi, I.; Haoues, M.; Roussis, V.; Kharrat, R.; Essafi-Benkhadir, K. Mertensene, a halogenated monoterpene, induces G2/M cell cycle arrest and caspase dependent apoptosis of human colon adenocarcinoma HT29 cell line through the modulation of ERK-1/-2, AKT and NF-κB signaling. Mar. Drugs, 2017, 15(7), 221-234.
[http://dx.doi.org/10.3390/md15070221] [PMID: 28726723 ]
[141]
Wang, W.; Wan, X.; Liu, J.; Wang, J.; Zhu, H.; Chen, C.; Zhang, Y. Two New Terpenoids from Talaromyces purpurogenus. Mar. Drugs, 2018, 16(5), 150-159.
[http://dx.doi.org/10.3390/md16050150] [PMID: 29724060 ]
[142]
Orabi, A.S.; Abou El-Nour, K.M.M.; Ahmed, S.A.; El-Falouji, A.I. Novel gold and silver-sarcophine complexes as antitumor agents against MCF7 and HepG2 cells: Synthesis, characterization, in silico, in vitro and docking studies. J. Mol. Liq., 2019, 273, 559-575.
[http://dx.doi.org/10.1016/j.molliq.2018.10.058]
[143]
Shaaban, M.; El-Hagrassi, A.M.; Abdelghani, M.A.; Osman, A.F. Diverse bioactive compounds from Sarcophtyton glaucom: structure elucidation and cytotoxic activity studies. Z. Natforsch. C J. Biosci., 2018, 73(9-10), 325-334.
[http://dx.doi.org/10.1515/znc-2017-0106] [PMID: 28937968]
[144]
Hegazy, M.F.; Elshamy, A.I.; Mohamed, T.A.; Hamed, A.R.; Ibrahim, M.A.A.; Ohta, S.; Paré, P.W. Cembrene diterpenoids with ether linkages from sarcophyton ehrenbergi: an anti-proliferation and molecular-docking assessment. Mar. Drugs, 2017, 15(6), 192-205.
[http://dx.doi.org/10.3390/md15060192] [PMID: 28635645 ]
[145]
Kamada, T.; Kang, M.C.; Phan, C.S.; Zanil, I.I.; Jeon, Y.J.; Vairappan, C.S. Bioactive cembranoids from the soft coral genus Sinularia sp. in borneo. Mar. Drugs, 2018, 16(4), 99-112.
[http://dx.doi.org/10.3390/md16040099] [PMID: 29561805 ]
[146]
Tang, J.; Wu, W.; Yang, F.; Liu, L.; Yang, Z.; Liu, L.; Tang, W.; Sun, F.; Lin, H. Marine sponge-derived smenospongine preferentially eliminates breast cancer stem-like cells via p38/AMPKα pathways. Cancer Med., 2018, 7(8), 3965-3976.
[http://dx.doi.org/10.1002/cam4.1640] [PMID: 29982992]
[147]
Ebada, S.S.; de Voogd, N.; Kalscheuer, R.; Müller, W.E.G. Chaidir; Proksch, P. Cytotoxic drimane meroterpenoids from the indonesian marine sponge dactylospongia elegans. Phytochem. Lett., 2017, 22, 154-158.
[http://dx.doi.org/10.1016/j.phytol.2017.09.026]
[148]
Lee, Y.S.; Duh, T.H.; Siao, S.S.; Chang, R.C.; Wang, S.K.; Duh, C.Y. New cytotoxic terpenoids from soft corals nephthea chabroli and paralemnalia thyrsoides. Mar. Drugs, 2017, 15(12), 392-400.
[http://dx.doi.org/10.3390/md15120392] [PMID: 29257046 ]
[149]
Salvador-Reyes, L.A.; Sneed, J.; Paul, V.J.; Luesch, H. Amantelides A and B, polyhydroxylated macrolides with differential broad-spectrum cytotoxicity from a guamanian marine cyanobacterium. J. Nat. Prod., 2015, 78(8), 1957-1962.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00293] [PMID: 26204500 ]
[150]
Kita, M.; Hirayama, Y.; Yoneda, K.; Yamagishi, K.; Chinen, T.; Usui, T.; Sumiya, E.; Uesugi, M.; Kigoshi, H. Inhibition of microtubule assembly by a complex of actin and antitumor macrolide aplyronine A. J. Am. Chem. Soc., 2013, 135(48), 18089-18095.
[http://dx.doi.org/10.1021/ja406580w] [PMID: 24228690 ]
[151]
Kita, M.; Kigoshi, H. Marine natural products that interfere with multiple cytoskeletal protein interactions. Nat. Prod. Rep., 2015, 32(4), 534-542.
[http://dx.doi.org/10.1039/C4NP00129J] [PMID: 25512265 ]
[152]
Ciavatta, M.L.; Lefranc, F.; Carbone, M.; Mollo, E.; Gavagnin, M.; Betancourt, T.; Dasari, R.; Kornienko, A.; Kiss, R. Marine mollusk-derived agents with antiproliferative activity as promising anticancer agents to overcome chemotherapy resistance. Med. Res. Rev., 2017, 37(4), 702-801.
[http://dx.doi.org/10.1002/med.21423] [PMID: 27925266]
[153]
AnŽiček N.; Williams, S.; Housden, M.P.; Paterson, I. Toward aplyronine payloads for antibody-drug conjugates: total synthesis of aplyronines A and D. Org. Biomol. Chem., 2018, 16(8), 1343-1350.
[http://dx.doi.org/10.1039/C7OB03204H] [PMID: 29393939]
[154]
Futaki, K.; Takahashi, M.; Tanabe, K.; Fujieda, A.; Kigoshi, H.; Kita, M. Synthesis and biological activities of aplyronine a analogues toward the development of antitumor protein-protein interaction inducers between actin and tubulin: Conjugation of the C1-C9 macrolactone part and the C24-C34 side chain. ACS Omega, 2019, 4(5), 8598-8613.
[http://dx.doi.org/10.1021/acsomega.9b01099] [PMID: 31459949]
[155]
Kobayashi, K.; Fujii, Y.; Hirayama, Y.; Kobayashi, S.; Hayakawa, I.; Kigoshi, H. Design, synthesis, and biological evaluations of aplyronine A-mycalolide B hybrid compound. Org. Lett., 2012, 14(5), 1290-1293.
[http://dx.doi.org/10.1021/ol300182r] [PMID: 22356580 ]
[156]
Kollár, P.; Rajchard, J.; Balounová, Z.; Pazourek, J. Marine natural products: bryostatins in preclinical and clinical studies. Pharm. Biol., 2014, 52(2), 237-242.
[http://dx.doi.org/10.3109/13880209.2013.804100] [PMID: 24033119 ]
[157]
Wang, J.; Wang, Z.; Sun, Y.; Liu, D. Bryostatin-1 inhibits cell proliferation of hepatocarcinoma and induces cell cycle arrest by activation of GSK3β. Biochem. Biophys. Res. Commun., 2019, 512(3), 473-478.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.014] [PMID: 30904158 ]
[158]
Xu, W.; Xie, C.; Feng, Y. Bryostatin inhibits proliferation of ependymoma cells by suppressing expressions of cyclooxygenase-2 and interleukin-8 licensed under the creative commons attribution 4.0 international license. Trop. J. Pharm. Res., 2019, 18(2), 251-256.
[http://dx.doi.org/10.4314/tjpr.v18i2.5]
[159]
Irie, K.; Yanagita, R.C. Synthesis and biological activities of simplified analogs of the natural PKC ligands, bryostatin-1 and aplysiatoxin. Chem. Rec., 2014, 14(2), 251-267.
[http://dx.doi.org/10.1002/tcr.201300036] [PMID: 24677503]
[160]
Pettit, G.R.; Cichacz, Z.A.; Gao, F.; Boyd, M.R.; Schmidt, J.M. Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J. Chem. Soc. Chem. Commun., (9), 1111-1112.
[http://dx.doi.org/10.1039/c39940001111]
[161]
Trigili, C.; Barasoain, I.; Sánchez-Murcia, P.A.; Bargsten, K.; Redondo-Horcajo, M.; Nogales, A.; Gardner, N.M.; Meyer, A.; Naylor, G.J.; Gómez-Rubio, E.; Gago, F.; Steinmetz, M.O.; Paterson, I.; Prota, A.E.; Díaz, J.F. Structural determinants of the dictyostatin chemotype for tubulin binding affinity and antitumor activity against taxane- and epothilone-resistant cancer cells. ACS Omega, 2016, 1(6), 1192-1204.
[http://dx.doi.org/10.1021/acsomega.6b00317] [PMID: 30023505]
[162]
Dybdal-Hargreaves, N.F.; Risinger, A.L.; Mooberry, S.L. Eribulin mesylate: mechanism of action of a unique microtubule-targeting agent. Clin. Cancer Res., 2015, 21(11), 2445-2452.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3252] [PMID: 25838395]
[163]
Shin, Y.; Kim, G.D.; Jeon, J.E.; Shin, J.; Lee, S.K. Antimetastatic effect of halichondramide, a trisoxazole macrolide from the marine sponge Chondrosia corticata, on human prostate cancer cells via modulation of epithelial-to-mesenchymal transition. Mar. Drugs, 2013, 11(7), 2472-2485.
[http://dx.doi.org/10.3390/md11072472] [PMID: 23860239 ]
[164]
Bae, S.Y.; Kim, G.D.; Jeon, J.E.; Shin, J.; Lee, S.K. Anti-proliferative effect of (19Z)-halichondramide, a novel marine macrolide isolated from the sponge Chondrosia corticata, is associated with G2/M cell cycle arrest and suppression of mTOR signaling in human lung cancer cells. Toxicol. In Vitro, 2013, 27(2), 694-699.
[http://dx.doi.org/10.1016/j.tiv.2012.11.001] [PMID: 23147639]
[165]
Guzmán, E.A.; Xu, Q.; Pitts, T.P.; Mitsuhashi, K.O.; Baker, C.; Linley, P.A.; Oestreicher, J.; Tendyke, K.; Winder, P.L.; Suh, E.M.; Wright, A.E. Leiodermatolide, a novel marine natural product, has potent cytotoxic and antimitotic activity against cancer cells, appears to affect microtubule dynamics, and exhibits antitumor activity. Int. J. Cancer, 2016, 139(9), 2116-2126.
[http://dx.doi.org/10.1002/ijc.30253] [PMID: 27376928 ]
[166]
Wright, A.E.; Roberts, J.C.; Guzmán, E.A.; Pitts, T.P.; Pomponi, S.A.; Reed, J.K. Analogues of the potent antitumor compound leiodermatolide from a deep-water sponge of the genus leiodermatium. J. Nat. Prod., 2017, 80(3), 735-739.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01140] [PMID: 28135095 ]
[167]
Paterson, I.; Ng, K.K-H.; Williams, S.; Millican, D.C.; Dalby, S.M. Total synthesis of the antimitotic marine macrolide (-)-leiodermatolide. Angew. Chem. Int. Ed. Engl., 2014, 53(10), 2692-2695.
[http://dx.doi.org/10.1002/anie.201310164] [PMID: 24481746]
[168]
Paterson, I.; Williams, S. Strategy Evolution in the Total Synthesis of (-)-Leiodermatolide. Isr. J. Chem., 2017, 57(3-4), 192-201.
[http://dx.doi.org/10.1002/ijch.201600084]
[169]
Gallon, J.; Reymond, S.; Cossy, J. Neopeltolide, a new promising antitumoral agent. C. R. Chim., 2008, 11(11-12), 1463-1476.
[http://dx.doi.org/10.1016/j.crci.2008.08.006]
[170]
Fuwa, H.; Noguchi, T.; Kawakami, M.; Sasaki, M. Synthesis and biological evaluation of (+)-neopeltolide analogues: importance of the oxazole-containing side chain. Bioorg. Med. Chem. Lett., 2014, 24(11), 2415-2419.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.031] [PMID: 24792465]
[171]
Zhu, X.L.; Zhang, R.; Wu, Q.Y.; Song, Y.J.; Wang, Y.X.; Yang, J.F.; Yang, G.F. Natural Product Neopeltolide as a Cytochrome bc1 Complex Inhibitor: Mechanism of Action and Structural Modification. J. Agric. Food Chem., 2019, 67(10), 2774-2781.
[http://dx.doi.org/10.1021/acs.jafc.8b06195] [PMID: 30794394 ]
[172]
Zhuo, C.X.; Fürstner, A. Concise Synthesis of a Pateamine A Analogue with In Vivo Anticancer Activity Based on an Iron-Catalyzed Pyrone Ring Opening/Cross-Coupling. Angew. Chem. Int. Ed. Engl., 2016, 55(20), 6051-6056.
[http://dx.doi.org/10.1002/anie.201602125] [PMID: 27061139 ]
[173]
Kuznetsov, G.; Xu, Q.; Rudolph-Owen, L.; Tendyke, K.; Liu, J.; Towle, M.; Zhao, N.; Marsh, J.; Agoulnik, S.; Twine, N.; Parent, L.; Chen, Z.; Shie, J.L.; Jiang, Y.; Zhang, H.; Du, H.; Boivin, R.; Wang, Y.; Romo, D.; Littlefield, B.A. Potent in vitro and in vivo anticancer activities of des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A. Mol. Cancer Ther., 2009, 8(5), 1250-1260.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-1026] [PMID: 19417157 ]
[174]
Salcedo, R.G.; Olano, C.; Gómez, C.; Fernández, R.; Braña, A.F.; Méndez, C.; de la Calle, F.; Salas, J.A. Characterization and engineering of the biosynthesis gene cluster for antitumor macrolides PM100117 and PM100118 from a marine actinobacteria: generation of a novel improved derivative. Microb. Cell Fact., 2016, 15(1), 44-62.
[http://dx.doi.org/10.1186/s12934-016-0443-5] [PMID: 26905289 ]
[175]
Pérez, M.; Schleissner, C.; Fernández, R.; Rodríguez, P.; Reyes, F.; Zuñiga, P.; de la Calle, F.; Cuevas, C. PM100117 and PM100118, new antitumor macrolides produced by a marine Streptomyces caniferus GUA-06-05-006A. J. Antibiot. (Tokyo), 2016, 69(5), 388-394.
[http://dx.doi.org/10.1038/ja.2015.121] [PMID: 26648119 ]
[176]
Rizvi, S.A.; Tereshko, V.; Kossiakoff, A.A.; Kozmin, S.A. Structure of bistramide A-actin complex at a 1.35 angstroms resolution. J. Am. Chem. Soc., 2006, 128(12), 3882-3883.
[http://dx.doi.org/10.1021/ja058319c] [PMID: 16551075 ]
[177]
Herkommer, D.; Dreisigacker, S.; Sergeev, G.; Sasse, F.; Gohlke, H.; Menche, D. Design, synthesis, and biological evaluation of simplified side chain hybrids of the potent actin binding polyketides rhizopodin and bistramide. ChemMedChem, 2015, 10(3), 470-489.
[http://dx.doi.org/10.1002/cmdc.201402508] [PMID: 25641798 ]
[178]
Hanna, R.D.; Naro, Y.; Deiters, A.; Floreancig, P.E. Potent and readily accessible bistramide a analogues through diverted total synthesis. Chemistry, 2018, 24(61), 16271-16275.
[http://dx.doi.org/10.1002/chem.201804417] [PMID: 30175480 ]
[179]
Chen, L.; Riaz Ahmed, K.B.; Huang, P.; Jin, Z. Design, synthesis, and biological evaluation of truncated superstolide A. Angew. Chem. Int. Ed. Engl., 2013, 52(12), 3446-3449.
[http://dx.doi.org/10.1002/anie.201209300] [PMID: 23404936 ]
[180]
Chen, Q.H.; Kingston, D.G.I. Zampanolide and dactylolide: cytotoxic tubulin-assembly agents and promising anticancer leads. Nat. Prod. Rep., 2014, 31(9), 1202-1226.
[http://dx.doi.org/10.1039/C4NP00024B] [PMID: 24945566 ]
[181]
Zurwerra, D.; Glaus, F.; Betschart, L.; Schuster, J.; Gertsch, J.; Ganci, W.; Altmann, K.H. Total synthesis of (-)-zampanolide and structure-activity relationship studies on (-)-dactylolide derivatives. Chemistry, 2012, 18(52), 16868-16883.
[http://dx.doi.org/10.1002/chem.201202553] [PMID: 23136113 ]
[182]
Negi, B.; Kumar, D.; Rawat, D.S. Marine peptides as anticancer agents: a remedy to mankind by nature. Curr. Protein Pept. Sci., 2017, 18(9), 885-904.
[http://dx.doi.org/10.2174/1389203717666160724200849] [PMID: 27455970]
[183]
Xiao, X.; Liao, X.; Qiu, S.; Liu, Z.; Du, B.; Xu, S. Synthesis, cytotoxicity and apoptosis induction in human tumor cells by galaxamide and its analogues [corrected]. Mar. Drugs, 2014, 12(8), 4521-4538.
[http://dx.doi.org/10.3390/md12084521] [PMID: 25231922 ]
[184]
Rastelli, E.J.; Coltart, D.M. Synthesis and biological activity of apratoxin derivatives. Tetrahedron, 2018, 74(19), 2269-2290.
[http://dx.doi.org/10.1016/j.tet.2017.11.004]
[185]
Skiba, M.A.; Sikkema, A.P.; Moss, N.A.; Lowell, A.N.; Su, M.; Sturgis, R.M.; Gerwick, L.; Gerwick, W.H.; Sherman, D.H.; Smith, J.L. Biosynthesis of t-Butyl in Apratoxin A: Functional Analysis and Architecture of a PKS Loading Module. ACS Chem. Biol., 2018, 13(6), 1640-1650.
[http://dx.doi.org/10.1021/acschembio.8b00252] [PMID: 29701944]
[186]
Onda, Y.; Masuda, Y.; Yoshida, M.; Doi, T. Conformation-Based Design and Synthesis of Apratoxin A Mimetics Modified at the α,β-Unsaturated Thiazoline Moiety. J. Med. Chem., 2017, 60(15), 6751-6765.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00833] [PMID: 28682609]
[187]
Mao, Z.Y.; Si, C.M.; Liu, Y.W.; Dong, H.Q.; Wei, B.G.; Lin, G.Q. Divergent synthesis of revised apratoxin E, 30-epi-apratoxin E, and 30S/30R-oxoapratoxin E. J. Org. Chem., 2017, 82(20), 10830-10845.
[http://dx.doi.org/10.1021/acs.joc.7b01598] [PMID: 28933840 ]
[188]
Cai, W.; Chen, Q.Y.; Dang, L.H.; Luesch, H. Apratoxin S10, a dual inhibitor of angiogenesis and cancer cell growth to treat highly vascularized tumors. ACS Med. Chem. Lett., 2017, 8(10), 1007-1012.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00192] [PMID: 29057042 ]
[189]
Medina, R.A.; Goeger, D.E.; Hills, P.; Mooberry, S.L.; Huang, N.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H.; McPhail, K.L. Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J. Am. Chem. Soc., 2008, 130(20), 6324-6325.
[http://dx.doi.org/10.1021/ja801383f] [PMID: 18444611]
[190]
Yao, G.; Pan, Z.; Wu, C.; Wang, W.; Fang, L.; Su, W. Efficient synthesis and stereochemical revision of coibamide A. J. Am. Chem. Soc., 2015, 137(42), 13488-13491.
[http://dx.doi.org/10.1021/jacs.5b09286] [PMID: 26469305 ]
[191]
Sable, G.A.; Park, J.; Kim, H.; Lim, S.J.; Jang, S.; Lim, D. Solid-phase total synthesis of the proposed structure of coibamide A and its derivative: Highly methylated cyclic depsipeptides. Eur. J. Org. Chem., 2015, 2015(32), 7043-7052.
[http://dx.doi.org/10.1002/ejoc.201500697]
[192]
Wan, X.; Serrill, J.D.; Humphreys, I.R.; Tan, M.; McPhail, K.L.; Ganley, I.G.; Ishmael, J.E. ATG5 promotes death signaling in response to the cyclic depsipeptides coibamide A and apratoxin A. Mar. Drugs, 2018, 16(3), 77-96.
[http://dx.doi.org/10.3390/md16030077] [PMID: 29494533 ]
[193]
Yao, G.; Wang, W.; Ao, L.; Cheng, Z.; Wu, C.; Pan, Z.; Liu, K.; Li, H.; Su, W.; Fang, L. Improved total synthesis and biological evaluation of coibamide A analogues. J. Med. Chem., 2018, 61(19), 8908-8916.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01141] [PMID: 30247036]
[194]
Serrill, J.D.; Wan, X.; Hau, A.M.; Jang, H.S.; Coleman, D.J.; Indra, A.K.; Alani, A.W.G.; McPhail, K.L.; Ishmael, J.E. Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts. Invest. New Drugs, 2016, 34(1), 24-40.
[http://dx.doi.org/10.1007/s10637-015-0303-x] [PMID: 26563191 ]
[195]
Guzmán, E.A.; Harmody, D.; Pitts, T.P.; Vera-Diaz, B.; Winder, P.L.; Yu, Y.; Wright, A.E. Inhibition of IL-8 secretion on BxPC-3 and MIA PaCa-2 cells and induction of cytotoxicity in pancreatic cancer cells with marine natural products. Anticancer Drugs, 2017, 28(2), 153-160.
[http://dx.doi.org/10.1097/CAD.0000000000000443] [PMID: 27749658 ]
[196]
Sánchez-Murcia, P.A.; Cortés-Cabrera, Á.; Gago, F. Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B. J. Comput. Aided Mol. Des., 2017, 31(10), 915-928.
[http://dx.doi.org/10.1007/s10822-017-0066-x] [PMID: 28900796 ]
[197]
Toulmonde, M.; Le Cesne, A.; Piperno-Neumann, S.; Penel, N.; Chevreau, C.; Duffaud, F.; Bellera, C.; Italiano, A. Aplidin in patients with advanced dedifferentiated liposarcomas: a French Sarcoma Group Single-Arm Phase II study. Ann. Oncol., 2015, 26(7), 1465-1470.
[http://dx.doi.org/10.1093/annonc/mdv195] [PMID: 26041763 ]
[198]
Beedessee, G.; Ramanjooloo, A.; Tiscornia, I.; Cresteil, T.; Raghothama, S.; Arya, D.; Rao, S.; Gowd, K.H.; Bollati-Fogolin, M.; Marie, D.E.P. Evaluation of hexane and ethyl acetate extracts of the sponge Jaspis diastra collected from Mauritius Waters on HeLa cells. J. Pharm. Pharmacol., 2014, 66(9), 1317-1327.
[http://dx.doi.org/10.1111/jphp.12256] [PMID: 24758528 ]
[199]
Xu, W.J.; Liao, X.J.; Xu, S.H.; Diao, J.Z.; Du, B.; Zhou, X.L.; Pan, S.S. Isolation, structure determination, and synthesis of galaxamide, a rare cytotoxic cyclic pentapeptide from a marine algae Galaxaura filamentosa. Org. Lett., 2008, 10(20), 4569-4572.
[http://dx.doi.org/10.1021/ol801799d] [PMID: 18816120]
[200]
Bai, D.; Yu, S.; Zhong, S.; Zhao, B.; Qiu, S.; Chen, J.; Lunagariya, J.; Liao, X.; Xu, S. d-Amino Acid Position Influences the Anticancer Activity of Galaxamide Analogs: An Apoptotic Mechanism Study. Int. J. Mol. Sci., 2017, 18(3), 544-562.
[http://dx.doi.org/10.3390/ijms18030544] [PMID: 28287429 ]
[201]
Lunagariya, J.; Zhong, S.; Chen, J.; Bai, D.; Bhadja, P.; Long, W.; Liao, X.; Tang, X.; Xu, S. Design and synthesis of analogues of marine natural product galaxamide, an n-methylated cyclic pentapeptide, as potential anti-tumor agent in vitro. Mar. Drugs, 2016, 14(9), 161-182.
[http://dx.doi.org/10.3390/md14090161] [PMID: 27598177 ]
[202]
Miguel-Lillo, B.; Valenzuela, B.; Peris-Ribera, J.E.; Soto-Matos, A.; Pérez-Ruixo, J.J. Population pharmacokinetics of kahalalide F in advanced cancer patients. Cancer Chemother. Pharmacol., 2015, 76(2), 365-374.
[http://dx.doi.org/10.1007/s00280-015-2800-1] [PMID: 26093949 ]
[203]
Ciavatta, M.L.; Devi, P.; Carbone, M.; Mathieu, V.; Kiss, R.; Casapullo, A.; Gavagnin, M.; Kahalalide, F. Analogues from the mucous secretion of indian sacoglossan mollusk elysia ornata. Tetrahedron, 2016, 72(5), 625-631.
[http://dx.doi.org/10.1016/j.tet.2015.12.003]
[204]
Petty, R.; Anthoney, A.; Metges, J.P.; Alsina, M.; Gonçalves, A.; Brown, J.; Montagut, C.; Gunzer, K.; Laus, G.; Iglesias Dios, J.L.; Miguel-Lillo, B.; Bohan, P.; Salazar, R. Phase Ib/II study of elisidepsin in metastatic or advanced gastroesophageal cancer (IMAGE trial). Cancer Chemother. Pharmacol., 2016, 77(4), 819-827.
[http://dx.doi.org/10.1007/s00280-016-2991-0] [PMID: 26964995 ]
[205]
Goel, S.; Viteri, S.; Morán, T.; Coronado, C.; Dios, J.L.I.; Miguel-Lillo, B.; Fernández-García, E.M.; Rosell, R.; Phase, I. Phase I, dose-escalating study of elisidepsin (Irvalec(®)), a plasma membrane-disrupting marine antitumor agent, in combination with erlotinib in patients with advanced malignant solid tumors. Invest. New Drugs, 2016, 34(1), 75-83.
[http://dx.doi.org/10.1007/s10637-015-0305-8] [PMID: 26627080 ]
[206]
Lollo, G.; Gonzalez-Paredes, A.; Garcia-Fuentes, M.; Calvo, P.; Torres, D.; Alonso, M.J. Polyarginine nanocapsules as a potential oral peptide delivery carrier. J. Pharm. Sci., 2017, 106(2), 611-618.
[http://dx.doi.org/10.1016/j.xphs.2016.09.029] [PMID: 27855960 ]
[207]
Choi, H.; Mevers, E.; Byrum, T.; Valeriote, F.A.; Gerwick, W.H. Lyngbyabellins K-N from Two Palmyra Atoll Collections of the Marine Cyanobacterium Moorea bouillonii. Eur. J. Org. Chem., 2012, 2012(27), 5141-5150.
[http://dx.doi.org/10.1002/ejoc.201200691] [PMID: 24574859 ]
[208]
Pirovani, R.V.; Brito, G.A.; Barcelos, R.C.; Pilli, R.A. Enantioselective total synthesis of (+)-lyngbyabellin M. Mar. Drugs, 2015, 13(6), 3309-3324.
[http://dx.doi.org/10.3390/md13063309] [PMID: 26023838 ]
[209]
Tesfazghi, S.; Eide, J.; Dammalapati, A.; Korlesky, C.; Wyche, T.P.; Bugni, T.S.; Chen, H.; Jaskula-Sztul, R. Thiocoraline alters neuroendocrine phenotype and activates the Notch pathway in MTC-TT cell line. Cancer Med., 2013, 2(5), 734-743.
[http://dx.doi.org/10.1002/cam4.118] [PMID: 24403239]
[210]
Wyche, T.P.; Dammalapati, A.; Cho, H.; Harrison, A.D.; Kwon, G.S.; Chen, H.; Bugni, T.S.; Jaskula-Sztul, R. Thiocoraline activates the Notch pathway in carcinoids and reduces tumor progression in vivo. Cancer Gene Ther., 2014, 21(12), 518-525.
[http://dx.doi.org/10.1038/cgt.2014.57] [PMID: 25412645 ]
[211]
Wang, X.; Dong, S.; Feng, D.; Chen, Y.; Ma, M.; Hu, W. Synthesis and biological activity evaluation of dolastatin 10 analogues with n-terminal modifications. Tetrahedron, 2017, 73(16), 2255-2266.
[http://dx.doi.org/10.1016/j.tet.2017.03.006]
[212]
Dugal-Tessier, J.; Barnscher, S.D.; Kanai, A.; Mendelsohn, B.A. Synthesis and evaluation of dolastatin 10 analogues containing heteroatoms on the amino acid side chains. J. Nat. Prod., 2017, 80(9), 2484-2491.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00359] [PMID: 28885014]
[213]
Akaiwa, M.; Martin, T.; Mendelsohn, B.A. Synthesis and evaluation of linear and macrocyclic dolastatin 10 analogues containing pyrrolidine ring modifications. ACS Omega, 2018, 3(5), 5212-5221.
[http://dx.doi.org/10.1021/acsomega.8b00093] [PMID: 30023909]
[214]
Zhou, W.; Nie, X.D.; Zhang, Y.; Si, C.M.; Zhou, Z.; Sun, X.; Wei, B.G. A practical approach to asymmetric synthesis of dolastatin 10. Org. Biomol. Chem., 2017, 15(29), 6119-6131.
[http://dx.doi.org/10.1039/C7OB01395G] [PMID: 28682414]
[215]
Liang, Y.; Xie, X.; Chen, L.; Yan, S.; Ye, X.; Anjum, K.; Huang, H.; Lian, X.; Zhang, Z. Bioactive Polycyclic Quinones from Marine Streptomyces sp. 182SMLY. Mar. Drugs, 2016, 14(1), 10-20.
[http://dx.doi.org/10.3390/md14010010] [PMID: 26751456]
[216]
Du, L.; Mahdi, F.; Datta, S.; Jekabsons, M.B.; Zhou, Y.D.; Nagle, D.G. Structures and mechanisms of antitumor agents: xestoquinones uncouple cellular respiration and disrupt HIF signaling in human breast tumor cells. J. Nat. Prod., 2012, 75(9), 1553-1559.
[http://dx.doi.org/10.1021/np3002892] [PMID: 22938093 ]
[217]
He, F.; Mai, L.H.; Longeon, A.; Copp, B.R.; Loaëc, N.; Bescond, A.; Meijer, L.; Bourguet-Kondracki, M.L. Novel adociaquinone derivatives from the indonesian sponge Xestospongia sp. Mar. Drugs, 2015, 13(5), 2617-2628.
[http://dx.doi.org/10.3390/md13052617] [PMID: 25927661 ]
[218]
Delgado, V.; Ibacache, A.; Theoduloz, C.; Valderrama, J.A. Synthesis and in vitro cytotoxic evaluation of aminoquinones structurally related to marine isoquinolinequinones. Molecules, 2012, 17(6), 7042-7056.
[http://dx.doi.org/10.3390/molecules17067042] [PMID: 22678417]
[219]
Hawas, U.W.; Shaaban, M.; Shaaban, K.A.; Speitling, M.; Maier, A.; Kelter, G.; Fiebig, H.H.; Meiners, M.; Helmke, E.; Laatsch, H. Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine streptomycete. J. Nat. Prod., 2009, 72(12), 2120-2124.
[http://dx.doi.org/10.1021/np900160g] [PMID: 19921834 ]
[220]
Fouillaud, M.; Venkatachalam, M.; Girard-Valenciennes, E.; Caro, Y.; Dufossé, L. Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar. Drugs, 2016, 14(4), 64-127.
[http://dx.doi.org/10.3390/md14040064] [PMID: 27023571]
[221]
Wang, Y.; Qi, X.; Li, D.; Zhu, T.; Mo, X.; Li, J. Anticancer efficacy and absorption, distribution, metabolism, and toxicity studies of aspergiolide A in early drug development. Drug Des. Devel. Ther., 2014, 8, 1965-1977.
[PMID: 25378909]
[222]
Moon, K.; Chung, B.; Shin, Y.; Rheingold, A.L.; Moore, C.E.; Park, S.J.; Park, S.; Lee, S.K.; Oh, K.B.; Shin, J.; Oh, D.C. Pentacyclic antibiotics from a tidal mud flat-derived actinomycete. J. Nat. Prod., 2015, 78(3), 524-529.
[http://dx.doi.org/10.1021/np500736b] [PMID: 25495422]
[223]
Goey, A.K.L.; Chau, C.H.; Sissung, T.M.; Cook, K.M.; Venzon, D.J.; Castro, A.; Ransom, T.R.; Henrich, C.J.; McKee, T.C.; McMahon, J.B.; Grkovic, T.; Cadelis, M.M.; Copp, B.R.; Gustafson, K.R.; Figg, W.D. Screening and biological effects of marine pyrroloiminoquinone alkaloids: potential inhibitors of the HIF-1α/p300 interaction. J. Nat. Prod., 2016, 79(5), 1267-1275.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00846] [PMID: 27140429]
[224]
Xin, W.; Ye, X.; Yu, S.; Lian, X.Y.; Zhang, Z. New capoamycin-type antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025. Mar. Drugs, 2012, 10(11), 2388-2402.
[http://dx.doi.org/10.3390/md10112388] [PMID: 23203266]
[225]
Hu, Y.; Martinez, E.D.; MacMillan, J.B. Anthraquinones from a marine-derived Streptomyces spinoverrucosus. J. Nat. Prod., 2012, 75(10), 1759-1764.
[http://dx.doi.org/10.1021/np3004326] [PMID: 23057874]
[226]
Sottorff, I.; Künzel, S.; Wiese, J.; Lipfert, M.; Preußke, N.; Sönnichsen, F.D.; Imhoff, J.F. Antitumor anthraquinones from an easter island sea anemone: Animal or bacterial origin? Mar. Drugs, 2019, 17(3), 154-168.
[http://dx.doi.org/10.3390/md17030154] [PMID: 30841562]
[227]
Shih, S.P.; Lee, M.G.; El-Shazly, M.; Juan, Y.S.; Wen, Z.H.; Du, Y.C.; Su, J.H.; Sung, P.J.; Chen, Y.C.; Yang, J.C.; Wu, Y.C.; Lu, M.C. Tackling the cytotoxic effect of a marine polycyclic quinone-type metabolite: halenaquinone induces molt 4 cells apoptosis via oxidative stress combined with the inhibition of HDAC and topoisomerase activities. Mar. Drugs, 2015, 13(5), 3132-3153.
[http://dx.doi.org/10.3390/md13053132] [PMID: 26006712 ]
[228]
Goswami, S.; Harada, K.; El-Mansy, M.F.; Lingampally, R.; Carter, R.G. Enantioselective synthesis of (-)-halenaquinone. Angew. Chem. Int. Ed. Engl., 2018, 57(29), 9117-9121.
[http://dx.doi.org/10.1002/anie.201805370] [PMID: 29920904 ]
[229]
Bae, M.; Moon, K.; Kim, J.; Park, H.J.; Lee, S.K.; Shin, J.; Oh, D.C. Mohangic Acids A-E, p-Aminoacetophenonic Acids from a Marine-Mudflat-Derived Streptomyces sp. J. Nat. Prod., 2016, 79(2), 332-339.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00956] [PMID: 26798949]
[230]
Vicente, J.; Stewart, A.K.; van Wagoner, R.M.; Elliott, E.; Bourdelais, A.J.; Wright, J.L.C. Monacyclinones, new angucyclinone metabolites isolated from Streptomyces sp. M7_15 associated with the puerto rican sponge scopalina ruetzleri. Mar. Drugs, 2015, 13(8), 4682-4700.
[http://dx.doi.org/10.3390/md13084682] [PMID: 26230704 ]
[231]
Daletos, G.; de Voogd, N.J.; Müller, W.E.G.; Wray, V.; Lin, W.; Feger, D.; Kubbutat, M.; Aly, A.H.; Proksch, P. Cytotoxic and protein kinase inhibiting nakijiquinones and nakijiquinols from the sponge Dactylospongia metachromia. J. Nat. Prod., 2014, 77(2), 218-226.
[http://dx.doi.org/10.1021/np400633m] [PMID: 24479418]
[232]
Trzoss, L.; Fukuda, T.; Costa-Lotufo, L.V.; Jimenez, P.; La Clair, J.J.; Fenical, W. Seriniquinone, a selective anticancer agent, induces cell death by autophagocytosis, targeting the cancer-protective protein dermcidin. Proc. Natl. Acad. Sci. USA, 2014, 111(41), 14687-14692.
[http://dx.doi.org/10.1073/pnas.1410932111] [PMID: 25271322]
[233]
Hammons, J.C.; Trzoss, L.; Jimenez, P.C.; Hirata, A.S.; Costa-Lotufo, L.V.; La Clair, J.J.; Fenical, W. Advance of Seriniquinone Analogues as Melanoma Agents. ACS Med. Chem. Lett., 2019, 10(2), 186-190.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00391] [PMID: 30783501]
[234]
Gutiérrez-Rodríguez, A.G.; Juárez-Portilla, C.; Olivares-Bañuelos, T.; Zepeda, R.C. Anticancer activity of seaweeds. Drug Discov. Today, 2018, 23(2), 434-447.
[http://dx.doi.org/10.1016/j.drudis.2017.10.019] [PMID: 29107095]
[235]
Fernando, I.P.S.; Kim, M.; Son, K-T.; Jeong, Y.; Jeon, Y-J. Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J. Med. Food, 2016, 19(7), 615-628.
[http://dx.doi.org/10.1089/jmf.2016.3706] [PMID: 27332715]
[236]
Liu, M.; Zhang, W.; Wei, J.; Qiu, L.; Lin, X. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, induces mitochondrial apoptosis in K562 cells and inhibits topoisomerase I in vitro. Toxicol. Lett., 2012, 211(2), 126-134.
[http://dx.doi.org/10.1016/j.toxlet.2012.03.771] [PMID: 22484147]
[237]
Qi, X.; Liu, G.; Qiu, L.; Lin, X.; Liu, M. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems. Biomed. Pharmacother., 2015, 75, 58-66.
[http://dx.doi.org/10.1016/j.biopha.2015.08.033] [PMID: 26463632]
[238]
Kang, S.M.; Kim, A.D.; Heo, S.J.; Kim, K.N.; Lee, S.H.; Ko, S.C.; Jeon, Y.J. Induction of Apoptosis by Diphlorethohydroxycarmalol Isolated from Brown Alga, Ishige Okamurae. J. Funct. Foods, 2012, 4(2), 433-439.
[http://dx.doi.org/10.1016/j.jff.2012.02.001]
[239]
Ferreira, J.; Ramos, A.A.; Almeida, T.; Azqueta, A.; Rocha, E. Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: A mini review. Phytomedicine, 2018, 48, 84-93.
[http://dx.doi.org/10.1016/j.phymed.2018.04.062] [PMID: 30195884]
[240]
Kim, R.K.; Uddin, N.; Hyun, J.W.; Kim, C.; Suh, Y.; Lee, S.J. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells. Toxicol. Appl. Pharmacol., 2015, 286(3), 143-150.
[http://dx.doi.org/10.1016/j.taap.2015.03.026] [PMID: 25843036 ]
[241]
Kim, R.K.; Suh, Y.; Yoo, K.C.; Cui, Y.H.; Hwang, E.; Kim, H.J.; Kang, J.S.; Kim, M.J.; Lee, Y.Y.; Lee, S.J. Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition. Cancer Sci., 2015, 106(1), 94-101.
[http://dx.doi.org/10.1111/cas.12562] [PMID: 25456733 ]
[242]
Kong, C.S.; Kim, J.A.; Yoon, N.Y.; Kim, S.K. Induction of apoptosis by phloroglucinol derivative from Ecklonia Cava in MCF-7 human breast cancer cells. Food Chem. Toxicol., 2009, 47(7), 1653-1658.
[http://dx.doi.org/10.1016/j.fct.2009.04.013] [PMID: 19393283 ]
[243]
Ryu, B.; Ahn, B.N.; Kang, K.H.; Kim, Y.S.; Li, Y.X.; Kong, C.S.; Kim, S.K.; Kim, D.G. Dioxinodehydroeckol protects human keratinocyte cells from UVB-induced apoptosis modulated by related genes Bax/Bcl-2 and caspase pathway. J. Photochem. Photobiol. B, 2015, 153, 352-357.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.10.018] [PMID: 26529485]
[244]
Yoon, N.Y.; Eom, T.K.; Kim, M.M.; Kim, S.K. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J. Agric. Food Chem., 2009, 57(10), 4124-4129.
[http://dx.doi.org/10.1021/jf900006f] [PMID: 19361156]
[245]
Ahn, J.H.; Yang, Y.I.; Lee, K.T.; Choi, J.H. Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. J. Cancer Res. Clin. Oncol., 2015, 141(2), 255-268.
[http://dx.doi.org/10.1007/s00432-014-1819-8] [PMID: 25216701 ]
[246]
Yang, Y.I.; Ahn, J.H.; Choi, Y.S.; Choi, J.H. Brown algae phlorotannins enhance the tumoricidal effect of cisplatin and ameliorate cisplatin nephrotoxicity. Gynecol. Oncol., 2015, 136(2), 355-364.
[http://dx.doi.org/10.1016/j.ygyno.2014.11.015] [PMID: 25462204 ]
[247]
Li, Y.X.; Li, Y.; Je, J.Y.; Kim, S.K. Dieckol as a novel anti-proliferative and anti-angiogenic agent and computational anti-angiogenic activity evaluation. Environ. Toxicol. Pharmacol., 2015, 39(1), 259-270.
[http://dx.doi.org/10.1016/j.etap.2014.11.027] [PMID: 25531264 ]
[248]
Zhang, D.; Wang, C.; Shen, L.; Shin, H.C.; Lee, K.B.; Ji, B. Comparative analysis of oxidative mechanisms of phloroglucinol and dieckol by electrochemical, spectroscopic, cellular and computational methods. RSC Advances, 2018, 8(4), 1963-1972.
[http://dx.doi.org/10.1039/C7RA10875C]
[249]
Eo, H.J.; Kwon, T.H.; Park, G.H.; Song, H.M.; Lee, S.J.; Park, N.H.; Jeong, J.B. In vitro anticancer activity of phlorofucofuroeckol A via upregulation of activating transcription factor 3 against human colorectal cancer cells. Mar. Drugs, 2016, 14(4), 69-81.
[http://dx.doi.org/10.3390/md14040069] [PMID: 27043582 ]
[250]
Jung, H.A.; Kim, J.I.; Choung, S.Y.; Choi, J.S. Protective effect of the edible brown alga Ecklonia stolonifera on doxorubicin-induced hepatotoxicity in primary rat hepatocytes. J. Pharm. Pharmacol., 2014, 66(8), 1180-1188.
[PMID: 24628384]
[251]
Guo, C.L.; Wang, L.J.; Zhao, Y.; Liu, H.; Li, X.Q.; Jiang, B.; Luo, J.; Guo, S-J.; Wu, N.; Shi, D.Y. A novel bromophenol derivative BOS-102 induces cell cycle arrest and apoptosis in human A549 lung cancer cells via ROS-mediated PI3K/Akt and the MAPK signaling pathway. Mar. Drugs, 2018, 16(2), 43-55.
[http://dx.doi.org/10.3390/md16020043] [PMID: 29370087 ]
[252]
Freitas, S.; Martins, R.; Costa, M.; Leão, P.N.; Vitorino, R.; Vasconcelos, V.; Urbatzka, R.; Freitas, S.; Martins, R.; Costa, M.; Leão, P.N.; Vitorino, R.; Vasconcelos, V.; Urbatzka, R.; Hierridin, B. Hierridin B isolated from a marine cyanobacterium alters VDAC1, mitochondrial activity, and cell cycle genes on HT-29 colon adenocarcinoma cells. Mar. Drugs, 2016, 14(9), 158-170.
[http://dx.doi.org/10.3390/md14090158] [PMID: 27589771]
[253]
Tian, Y.; Lin, X.; Zhou, X.; Liu, Y. Phenol derivatives from the sponge-derived fungus Didymellaceae sp. SCSIO F46. Front Chem., 2018, 6, 536-543.
[http://dx.doi.org/10.3389/fchem.2018.00536] [PMID: 30443544]
[254]
Gao, H.; Zhou, L.; Cai, S.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Diorcinols B-E, new prenylated diphenyl ethers from the marine-derived fungus Aspergillus versicolor ZLN-60. J. Antibiot. (Tokyo), 2013, 66(9), 539-542.
[http://dx.doi.org/10.1038/ja.2013.40] [PMID: 23677033 ]
[255]
Li, Z.X.; Wang, X.F.; Ren, G.W.; Yuan, X.L.; Deng, N.; Ji, G.X.; Li, W.; Zhang, P. Prenylated diphenyl ethers from the marine algal-derived endophytic fungus Aspergillus tennesseensis. Molecules, 2018, 23(9), 2368-2374.
[http://dx.doi.org/10.3390/molecules23092368] [PMID: 30227613 ]
[256]
Murugan, K.; Iyer, V.V. Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cell. Dev. Biol. Anim., 2013, 49(5), 324-334.
[http://dx.doi.org/10.1007/s11626-013-9603-7] [PMID: 23645467 ]
[257]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458 ]
[258]
Gesheva, V.; Chausheva, S.; Mihaylova, N.; Manoylov, I.; Doumanova, L.; Idakieva, K.; Tchorbanov, A. Anti-cancer properties of gastropodan hemocyanins in murine model of colon carcinoma. BMC Immunol., 2014, 15(1), 34-44.
[http://dx.doi.org/10.1186/s12865-014-0034-3] [PMID: 25168124 ]
[259]
Schwartsmann, G.; Brondani da Rocha, A.; Berlinck, R.G.S.; Jimeno, J. Marine organisms as a source of new anticancer agents. Lancet Oncol., 2001, 2(4), 221-225.
[http://dx.doi.org/10.1016/S1470-2045(00)00292-8] [PMID: 11905767]
[260]
Schneider, C.; Oellerich, T.; Baldauf, H.M.; Schwarz, S.M.; Thomas, D.; Flick, R.; Bohnenberger, H.; Kaderali, L.; Stegmann, L.; Cremer, A.; Martin, M.; Lohmeyer, J.; Michaelis, M.; Hornung, V.; Schliemann, C.; Berdel, W.E.; Hartmann, W.; Wardelmann, E.; Comoglio, F.; Hansmann, M.L.; Yakunin, A.F.; Geisslinger, G.; Ströbel, P.; Ferreirós, N.; Serve, H.; Keppler, O.T.; Cinatl, J., Jr SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia. Nat. Med., 2017, 23(2), 250-255.
[http://dx.doi.org/10.1038/nm.4255] [PMID: 27991919 ]
[261]
Cherigo, L.; Lopez, D.; Martinez-Luis, S. Secalonic acid- F inhibited cell growth more effectively than 5-fluorouracil on hepatocellular carcinoma in vitro and in vivo. Mar. Drugs, 2015, 13(4), 2010-2029.
[http://dx.doi.org/10.3390/md13042010] [PMID: 25854646 ]
[262]
Guru, S.K.; Pathania, A.S.; Kumar, S.; Ramesh, D.; Kumar, M.; Rana, S.; Kumar, A.; Malik, F.; Sharma, P.R.; Chandan, B.K.; Jaglan, S.; Sharma, J.P.; Shah, B.A.; Tasduq, S.A.; Lattoo, S.K.; Faruk, A.; Saxena, A.K.; Vishwakarma, R.A.; Bhushan, S. Secalonic acid-D represses HIF1α/VEGF-mediated angiogenesis by regulating the Akt/mTOR/p70S6K signaling cascade. Cancer Res., 2015, 75(14), 2886-2896.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2312] [PMID: 25977334 ]
[263]
Gao, X.; Sun, H.L.; Liu, D.S.; Zhang, J.R.; Zhang, J.; Yan, M.M.; Pan, X.H. Secalonic acid- F inhibited cell growth more effectively than 5-fluorouracil on hepatocellular carcinoma in vitro and in vivo. Neoplasma, 2017, 64(3), 344-350.
[http://dx.doi.org/10.4149/neo_2017_304] [PMID: 28253713 ]
[264]
Zhang, F.; Mijiti, M.; Ding, W.; Song, J.; Yin, Y.; Sun, W.; Li, Z. (+)-Terrein inhibits human hepatoma Bel-7402 proliferation through cell cycle arrest. Oncol. Rep., 2015, 33(3), 1191-1200.
[http://dx.doi.org/10.3892/or.2015.3719] [PMID: 25592371 ]
[265]
Wu, Y.; Zhu, Y.; Li, S.; Zeng, M.; Chu, J.; Hu, P.; Li, J.; Guo, Q.; Lv, X.B.; Huang, G. Terrein performs antitumor functions on esophageal cancer cells by inhibiting cell proliferation and synergistic interaction with cisplatin. Oncol. Lett., 2017, 13(4), 2805-2810.
[http://dx.doi.org/10.3892/ol.2017.5758] [PMID: 28454470 ]
[266]
Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342.
[PMID: 15713904]
[267]
Zhang, C.; Naman, C.B.; Engene, N.; Gerwick, W.H. Laucysteinamide A, a Hybrid PKS/NRPS Metabolite from a Saipan Cyanobacterium, cf. Caldora penicillata. Mar. Drugs, 2017, 15(4), 121-131.
[http://dx.doi.org/10.3390/md15040121] [PMID: 28420100]
[268]
Ratovitski, E.A.; Honecker, F.; Dyshlovoy, S.A. Tumor protein (TP)-p53 members as regulators of autophagy in tumor cells upon marine drug exposure. Mar. Drugs, 2016, 14(8), 154-172.
[http://dx.doi.org/10.3390/md14080154] [PMID: 27537898 ]
[269]
Wen, J.; Bao, Y.; Niu, Q.; Liu, J.; Yang, J.; Wang, W.; Jiang, T.; Fan, Y.; Li, K.; Wang, J.; Zhao, L.; Liu, D. Synthesis, biological evaluation and molecular modeling studies of psammaplin A and its analogs as potent histone deacetylases inhibitors and cytotoxic agents. Bioorg. Med. Chem. Lett., 2016, 26(17), 4372-4376.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.094] [PMID: 27460171]
[270]
Mishra, B.B.; Tiwari, V.K. Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46(10), 4769-4807.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.057] [PMID: 21889825]
[271]
Haefner, B. Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today, 2003, 8(12), 536-544.
[http://dx.doi.org/10.1016/S1359-6446(03)02713-2] [PMID: 12821301]
[272]
Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol., 2018, 9, 777-800.
[http://dx.doi.org/10.3389/fphar.2018.00777] [PMID: 30127738 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy