Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Genetic and Epigenetic Modulation of Drug Resistance in Cancer: Challenges and Opportunities

Author(s): Kanisha Shah and Rakesh M. Rawal*

Volume 20, Issue 14, 2019

Page: [1114 - 1131] Pages: 18

DOI: 10.2174/1389200221666200103111539

Price: $65

conference banner
Abstract

Cancer is a complex disease that has the ability to develop resistance to traditional therapies. The current chemotherapeutic treatment has become increasingly sophisticated, yet it is not 100% effective against disseminated tumours. Anticancer drugs resistance is an intricate process that ascends from modifications in the drug targets suggesting the need for better targeted therapies in the therapeutic arsenal. Advances in the modern techniques such as DNA microarray, proteomics along with the development of newer targeted drug therapies might provide better strategies to overcome drug resistance. This drug resistance in tumours can be attributed to an individual’s genetic differences, especially in tumoral somatic cells but acquired drug resistance is due to different mechanisms, such as cell death inhibition (apoptosis suppression) altered expression of drug transporters, alteration in drug metabolism epigenetic and drug targets, enhancing DNA repair and gene amplification. This review also focusses on the epigenetic modifications and microRNAs, which induce drug resistance and contributes to the formation of tumour progenitor cells that are not destroyed by conventional cancer therapies. Lastly, this review highlights different means to prevent the formation of drug resistant tumours and provides future directions for better treatment of these resistant tumours.

Keywords: Drug response, resistance mechanisms, epigenetics, microRNAs, epithelial-mesenchymal transitions, drug target alteration.

Graphical Abstract
[1]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[2]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[3]
Salgia, R.; Kulkarni, P. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer, 2018, 4(2), 110-118.
[http://dx.doi.org/10.1016/j.trecan.2018.01.001] [PMID: 29458961]
[4]
Zahreddine, H.; Borden, K.L. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 2013, 4, 28.
[http://dx.doi.org/10.3389/fphar.2013.00028] [PMID: 23504227]
[5]
Sampath, D.; Cortes, J.; Estrov, Z.; Du, M.; Shi, Z.; Andreeff, M.; Gandhi, V.; Plunkett, W. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood, 2006, 107(6), 2517-2524.
[http://dx.doi.org/10.1182/blood-2005-08-3351] [PMID: 16293603]
[6]
Michael, M.; Doherty, M.M. Tumoral drug metabolism: overview and its implications for cancer therapy. J. Clin. Oncol., 2005, 23(1), 205-229.
[http://dx.doi.org/10.1200/JCO.2005.02.120] [PMID: 15625375]
[7]
Plastaras, J.P.; Guengerich, F.P.; Nebert, D.W.; Marnett, L.J. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J. Biol. Chem., 2000, 275(16), 11784-11790.
[http://dx.doi.org/10.1074/jbc.275.16.11784] [PMID: 10766802]
[8]
Shen, H.; He, M.M.; Liu, H.; Wrighton, S.A.; Wang, L.; Guo, B.; Li, C. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab. Dispos., 2007, 35(8), 1292-1300.
[http://dx.doi.org/10.1124/dmd.107.015354] [PMID: 17470523]
[9]
Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 pharmacogenetics and cancer. Oncogene, 2006, 25(11), 1679-1691.
[http://dx.doi.org/10.1038/sj.onc.1209377] [PMID: 16550168]
[10]
Mehta, K.; Fok, J.Y. Targeting transglutaminase-2 to overcome chemoresistance in cancer cells.In: Drug Resistance in Cancer Cells; Mehta, K.; Bates, S.E.; Siddik, Z.H., Eds.; Springer: New York, NY, USA, 2009, pp. 95-114.
[http://dx.doi.org/10.1007/978-0-387-89445-4_5 ]
[11]
Rivlin, N.; Brosh, R.; Oren, M.; Rotter, V. Mutations in the p53 tumor suppressor gene. Genes Cancer, 2011, 2(4), 466-474.
[http://dx.doi.org/10.1177/1947601911408889] [PMID: 21779514]
[12]
Aas, T.; Børresen, A.L.; Geisler, S.; Smith-Sørensen, B.; Johnsen, H.; Varhaug, J.E.; Akslen, L.A.; Lønning, P.E. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat. Med., 1996, 2(7), 811-814.
[http://dx.doi.org/10.1038/nm0796-811] [PMID: 8673929]
[13]
Soengas, M.S.; Alarcón, R.M.; Yoshida, H.; Giaccia, A.J.; Hakem, R.; Mak, T.W.; Lowe, S.W. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science, 1999, 284(5411), 156-159.
[http://dx.doi.org/10.1126/science.284.5411.156] [PMID: 10102818]
[14]
Townsend, D.M.; Tew, K.D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 2003, 22(47), 7369-7375.
[http://dx.doi.org/10.1038/sj.onc.1206940] [PMID: 14576844]
[15]
Manolitsas, T.P.; Englefield, P.; Eccles, D.M.; Campbell, I.G. No association of a 306-bp insertion polymorphism in the progesterone receptor gene with ovarian and breast cancer. Br. J. Cancer, 1997, 75(9), 1398-1399.
[http://dx.doi.org/10.1038/bjc.1997.238] [PMID: 9155067]
[16]
Cumming, R.C.; Lightfoot, J.; Beard, K.; Youssoufian, H.; O’Brien, P.J.; Buchwald, M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat. Med., 2001, 7(7), 814-820.
[http://dx.doi.org/10.1038/89937] [PMID: 11433346]
[17]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[18]
Gagnon, J.F.; Bernard, O.; Villeneuve, L.; Têtu, B.; Guillemette, C. Irinotecan inactivation is modulated by epigenetic silencing of UGT1A1 in colon cancer. Clin. Cancer Res., 2006, 12(6), 1850-1858.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2130] [PMID: 16551870]
[19]
Chang, G.; Roth, C.B. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science, 2001, 293(5536), 1793-1800.
[http://dx.doi.org/10.1126/science.293.5536.1793] [PMID: 11546864]
[20]
Sauna, Z.E.; Ambudkar, S.V. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein. The two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes. J. Biol. Chem., 2001, 276(15), 11653-11661.
[http://dx.doi.org/10.1074/jbc.M011294200] [PMID: 11154703]
[21]
Borst, P.; Elferink, R.O. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem., 2002, 71, 537-592.
[http://dx.doi.org/10.1146/annurev.biochem.71.102301.093055] [PMID: 12045106]
[22]
Schinkel, A.H.; Smit, J.J.; van Tellingen, O.; Beijnen, J.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; van der Valk, M.A.; Robanus-Maandag, E.C.; te Riele, H.P. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 1994, 77(4), 491-502.
[http://dx.doi.org/10.1016/0092-8674(94)90212-7] [PMID: 7910522]
[23]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[24]
Szakács, G.; Annereau, J.P.; Lababidi, S.; Shankavaram, U.; Arciello, A.; Bussey, K.J.; Reinhold, W.; Guo, Y.; Kruh, G.D.; Reimers, M.; Weinstein, J.N.; Gottesman, M.M. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell, 2004, 6(2), 129-137.
[http://dx.doi.org/10.1016/j.ccr.2004.06.026] [PMID: 15324696]
[25]
Hilgendorf, C.; Ahlin, G.; Seithel, A.; Artursson, P.; Ungell, A.L.; Karlsson, J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos., 2007, 35(8), 1333-1340.
[http://dx.doi.org/10.1124/dmd.107.014902] [PMID: 17496207]
[26]
Abolhoda, A.; Wilson, A.E.; Ross, H.; Danenberg, P.V.; Burt, M.; Scotto, K.W. Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin. Cancer Res., 1999, 5(11), 3352-3356.
[PMID: 10589744]
[27]
Haber, M.; Smith, J.; Bordow, S.B.; Flemming, C.; Cohn, S.L.; London, W.B.; Marshall, G.M.; Norris, M.D. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J. Clin. Oncol., 2006, 24(10), 1546-1553.
[http://dx.doi.org/10.1200/JCO.2005.01.6196] [PMID: 16575006]
[28]
Yanase, K.; Tsukahara, S.; Asada, S.; Ishikawa, E.; Imai, Y.; Sugimoto, Y. Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol. Cancer Ther., 2004, 3(9), 1119-1125.
[PMID: 15367706]
[29]
Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15665-15670.
[http://dx.doi.org/10.1073/pnas.95.26.15665] [PMID: 9861027]
[30]
Imai, Y.; Ishikawa, E.; Asada, S.; Sugimoto, Y. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Res., 2005, 65(2), 596-604.
[PMID: 15695404]
[31]
Mutoh, K.; Tsukahara, S.; Mitsuhashi, J.; Katayama, K.; Sugimoto, Y. Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. Cancer Sci., 2006, 97(11), 1198-1204.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00300.x] [PMID: 16925584]
[32]
Katayama, K.; Yoshioka, S.; Tsukahara, S.; Mitsuhashi, J.; Sugimoto, Y. Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol. Cancer Ther., 2007, 6(7), 2092-2102.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0148] [PMID: 17620438]
[33]
Fukuyo, Y.; Hunt, C.R.; Horikoshi, N. Geldanamycin and its anti-cancer activities. Cancer Lett., 2010, 290(1), 24-35.
[http://dx.doi.org/10.1016/j.canlet.2009.07.010] [PMID: 19850405]
[34]
Koepsell, H.; Schmitt, B.M.; Gorboulev, V. Organic cation transporters. Rev. Physiol. Biochem. Pharmacol., 2003, 150, 36-90.
[http://dx.doi.org/10.1007/s10254-003-0017-x] [PMID: 12827517]
[35]
Nies, A.T.; Schwab, M. Organic cation transporter pharmacogenomics and drug-drug interaction. Expert Rev. Clin. Pharmacol., 2010, 3(6), 707-711.
[http://dx.doi.org/10.1586/ecp.10.60] [PMID: 22111772]
[36]
Koepsell, H. Substrate recognition and translocation by polyspecific organic cation transporters. Biol. Chem., 2011, 392(1-2), 95-101.
[http://dx.doi.org/10.1515/bc.2011.009] [PMID: 21194363]
[37]
Nies, A.T.; Koepsell, H.; Winter, S.; Burk, O.; Klein, K.; Kerb, R.; Zanger, U.M.; Keppler, D.; Schwab, M.; Schaeffeler, E. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology, 2009, 50(4), 1227-1240.
[http://dx.doi.org/10.1002/hep.23103] [PMID: 19591196]
[38]
Koepsell, H.; Lips, K.; Volk, C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res., 2007, 24(7), 1227-1251.
[http://dx.doi.org/10.1007/s11095-007-9254-z] [PMID: 17473959]
[39]
Gilchrist, S.E.; Alcorn, J. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids. Fundam. Clin. Pharmacol., 2010, 24(2), 205-214.
[PMID: 19702690]
[40]
Minuesa, G.; Purcet, S.; Erkizia, I.; Molina-Arcas, M.; Bofill, M.; Izquierdo-Useros, N.; Casado, F.J.; Clotet, B.; Pastor-Anglada, M.; Martinez-Picado, J. Expression and functionality of anti-human immunodeficiency virus and anticancer drug uptake transporters in immune cells. J. Pharmacol. Exp. Ther., 2008, 324(2), 558-567.
[http://dx.doi.org/10.1124/jpet.107.131482] [PMID: 18042828]
[41]
Nishimura, M.; Naito, S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet., 2005, 20(6), 452-477.
[http://dx.doi.org/10.2133/dmpk.20.452] [PMID: 16415531]
[42]
Nakanishi, T.; Tamai, I. Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J. Pharm. Sci., 2011, 100(9), 3731-3750.
[http://dx.doi.org/10.1002/jps.22576] [PMID: 21630275]
[43]
Zhang, S.; Lovejoy, K.S.; Shima, J.E.; Lagpacan, L.L.; Shu, Y.; Lapuk, A.; Chen, Y.; Komori, T.; Gray, J.W.; Chen, X.; Lippard, S.J.; Giacomini, K.M. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res., 2006, 66(17), 8847-8857.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0769] [PMID: 16951202]
[44]
Thomas, J.; Wang, L.; Clark, R.E.; Pirmohamed, M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood, 2004, 104(12), 3739-3745.
[http://dx.doi.org/10.1182/blood-2003-12-4276] [PMID: 15315971]
[45]
Koren-Michowitz, M.; Buzaglo, Z.; Ribakovsky, E.; Schwarz, M.; Pessach, I.; Shimoni, A.; Beider, K.; Amariglio, N.; le Coutre, P.; Nagler, A. OCT1 genetic variants are associated with long term outcomes in imatinib treated chronic myeloid leukemia patients. Eur. J. Haematol., 2014, 92(4), 283-288.
[http://dx.doi.org/10.1111/ejh.12235] [PMID: 24215657]
[46]
White, D.L.; Saunders, V.A.; Dang, P.; Engler, J.; Venables, A.; Zrim, S.; Zannettino, A.; Lynch, K.; Manley, P.W.; Hughes, T. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood, 2007, 110(12), 4064-4072.
[http://dx.doi.org/10.1182/blood-2007-06-093617] [PMID: 17761829]
[47]
Filipski, K.K.; Mathijssen, R.H.; Mikkelsen, T.S.; Schinkel, A.H.; Sparreboom, A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther., 2009, 86(4), 396-402.
[http://dx.doi.org/10.1038/clpt.2009.139] [PMID: 19625999]
[48]
Franke, R.M.; Kosloske, A.M.; Lancaster, C.S.; Filipski, K.K.; Hu, C.; Zolk, O.; Mathijssen, R.H.; Sparreboom, A. Influence of Oct1/Oct2-deficiency on cisplatin-induced changes in urinary N-acetyl-beta-D-glucosaminidase. Clin. Cancer Res., 2010, 16(16), 4198-4206.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0949] [PMID: 20601443]
[49]
Raymond, E.; Lawrence, R.; Izbicka, E.; Faivre, S.; Von Hoff, D.D. Activity of oxaliplatin against human tumor colony-forming units. Clin. Cancer Res., 1998, 4(4), 1021-1029.
[PMID: 9563898]
[50]
Yokoo, S.; Yonezawa, A.; Masuda, S.; Fukatsu, A.; Katsura, T.; Inui, K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem. Pharmacol., 2007, 74(3), 477-487.
[http://dx.doi.org/10.1016/j.bcp.2007.03.004] [PMID: 17582384]
[51]
Chen, Y.; Teranishi, K.; Li, S.; Yee, S.W.; Hesselson, S.; Stryke, D.; Johns, S.J.; Ferrin, T.E.; Kwok, P.; Giacomini, K.M. Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenomics J., 2009, 9(2), 127-136.
[http://dx.doi.org/10.1038/tpj.2008.19] [PMID: 19172157]
[52]
Yokoo, S.; Masuda, S.; Yonezawa, A.; Terada, T.; Katsura, T.; Inui, K. Significance of organic cation transporter 3 (SLC22A3) expression for the cytotoxic effect of oxaliplatin in colorectal cancer. Drug Metab. Dispos., 2008, 36(11), 2299-2306.
[http://dx.doi.org/10.1124/dmd.108.023168] [PMID: 18710896]
[53]
Shnitsar, V.; Eckardt, R.; Gupta, S.; Grottker, J.; Müller, G.A.; Koepsell, H.; Burckhardt, G.; Hagos, Y. Expression of human organic cation transporter 3 in kidney carcinoma cell lines increases chemosensitivity to melphalan, irinotecan, and vincristine. Cancer Res., 2009, 69(4), 1494-1501.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2483] [PMID: 19190342]
[54]
Stavrovskaya, A.A. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc.), 2000, 65(1), 95-106.
[PMID: 10702644]
[55]
Hinds, M.; Deisseroth, K.; Mayes, J.; Altschuler, E.; Jansen, R.; Ledley, F.D.; Zwelling, L.A. Identification of a point mutation in the topoisomerase II gene from a human leukemia cell line containing an amsacrine-resistant form of topoisomerase II. Cancer Res., 1991, 51(17), 4729-4731.
[PMID: 1651812]
[56]
Zwelling, L.A.; Hinds, M.; Chan, D.; Mayes, J.; Sie, K.L.; Parker, E.; Silberman, L.; Radcliffe, A.; Beran, M.; Blick, M. Characterization of an amsacrine-resistant line of human leukemia cells. Evidence for a drug-resistant form of topoisomerase II. J. Biol. Chem., 1989, 264(28), 16411-16420.
[PMID: 2550442]
[57]
Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989, 244(4905), 707-712.
[http://dx.doi.org/10.1126/science.2470152] [PMID: 2470152]
[58]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[59]
Bell, D.W.; Gore, I.; Okimoto, R.A.; Godin-Heymann, N.; Sordella, R.; Mulloy, R.; Sharma, S.V.; Brannigan, B.W.; Mohapatra, G.; Settleman, J.; Haber, D.A. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat. Genet., 2005, 37(12), 1315-1316.
[http://dx.doi.org/10.1038/ng1671] [PMID: 16258541]
[60]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[http://dx.doi.org/10.1056/NEJMoa044238] [PMID: 15728811]
[61]
Palmberg, C.; Koivisto, P.; Hyytinen, E.; Isola, J.; Visakorpi, T.; Kallioniemi, O.P.; Tammela, T. Androgen receptor gene amplification in a recurrent prostate cancer after monotherapy with the nonsteroidal potent antiandrogen Casodex (bicalutamide) with a subsequent favorable response to maximal androgen blockade. Eur. Urol., 1997, 31(2), 216-219.
[http://dx.doi.org/10.1159/000474453] [PMID: 9076469]
[62]
Dieras, V.; Vincent-Salomon, A.; Degeorges, A.; Beuzeboc, P.; Mignot, L.; de Cremoux, P. [Trastuzumab (Herceptin) and breast cancer: mechanisms of resistance]. Bull. Cancer, 2007, 94(3), 259-266.
[PMID: 17371768]
[63]
Berns, K.; Horlings, H.M.; Hennessy, B.T.; Madiredjo, M.; Hijmans, E.M.; Beelen, K.; Linn, S.C.; Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Hauptmann, M.; Beijersbergen, R.L.; Mills, G.B.; van de Vijver, M.J.; Bernards, R. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell, 2007, 12(4), 395-402.
[http://dx.doi.org/10.1016/j.ccr.2007.08.030] [PMID: 17936563]
[64]
Browne, B.C.; Crown, J.; Venkatesan, N.; Duffy, M.J.; Clynes, M.; Slamon, D.; O’Donovan, N. Inhibition of IGF1R activity enhances response to trastuzumab in HER-2-positive breast cancer cells. Ann. Oncol., 2011, 22(1), 68-73.
[http://dx.doi.org/10.1093/annonc/mdq349] [PMID: 20647220]
[65]
Razis, E.; Bobos, M.; Kotoula, V.; Eleftheraki, A.G.; Kalofonos, H.P.; Pavlakis, K.; Papakostas, P.; Aravantinos, G.; Rigakos, G.; Efstratiou, I.; Petraki, K.; Bafaloukos, D.; Kostopoulos, I.; Pectasides, D.; Kalogeras, K.T.; Skarlos, D.; Fountzilas, G. Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer. Breast Cancer Res. Treat., 2011, 128(2), 447-456.
[http://dx.doi.org/10.1007/s10549-011-1572-5] [PMID: 21594665]
[66]
Gorre, M.E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P.N.; Sawyers, C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001, 293(5531), 876-880.
[http://dx.doi.org/10.1126/science.1062538] [PMID: 11423618]
[67]
Al-Jamal, H.A.; Jusoh, S.A.; Yong, A.C.; Asan, J.M.; Hassan, R.; Johan, M.F. Silencing of suppressor of cytokine signaling-3 due to methylation results in phosphorylation of STAT3 in imatinib resistant BCR-ABL positive chronic myeloid leukemia cells. Asian Pac. J. Cancer Prev., 2014, 15(11), 4555-4561.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4555] [PMID: 24969884]
[68]
Hirayama, C.; Watanabe, H.; Nakashima, R.; Nanbu, T.; Hamada, A.; Kuniyasu, A.; Nakayama, H.; Kawaguchi, T.; Saito, H. Constitutive overexpression of P-glycoprotein, rather than breast cancer resistance protein or organic cation transporter 1, contributes to acquisition of imatinib-resistance in K562 cells. Pharm. Res., 2008, 25(4), 827-835.
[http://dx.doi.org/10.1007/s11095-007-9376-3] [PMID: 17934801]
[69]
Nambu, T.; Araki, N.; Nakagawa, A.; Kuniyasu, A.; Kawaguchi, T.; Hamada, A.; Saito, H. Contribution of BCR-ABL-independent activation of ERK1/2 to acquired imatinib resistance in K562 chronic myeloid leukemia cells. Cancer Sci., 2010, 101(1), 137-142.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01365.x] [PMID: 19843070]
[70]
Frew, A.J.; Lindemann, R.K.; Martin, B.P.; Clarke, C.J.; Sharkey, J.; Anthony, D.A.; Banks, K.M.; Haynes, N.M.; Gangatirkar, P.; Stanley, K.; Bolden, J.E.; Takeda, K.; Yagita, H.; Secrist, J.P.; Smyth, M.J.; Johnstone, R.W. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11317-11322.
[http://dx.doi.org/10.1073/pnas.0801868105] [PMID: 18685088]
[71]
Soria, J.C.; Smit, E.; Khayat, D.; Besse, B.; Yang, X.; Hsu, C.P.; Reese, D.; Wiezorek, J.; Blackhall, F. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(9), 1527-1533.
[http://dx.doi.org/10.1200/JCO.2009.25.4847] [PMID: 20159815]
[72]
Mataga, M.A.; Rosenthal, S.; Heerboth, S.; Devalapalli, A.; Kokolus, S.; Evans, L.R.; Longacre, M.; Housman, G.; Sarkar, S. Anti-breast cancer effects of histone deacetylase inhibitors and calpain inhibitor. Anticancer Res., 2012, 32(7), 2523-2529.
[PMID: 22753709]
[73]
Sarkar, S.; Faller, D.V. T-oligos inhibit growth and induce apoptosis in human ovarian cancer cells. Oligonucleotides, 2011, 21(1), 47-53.
[http://dx.doi.org/10.1089/oli.2010.0259] [PMID: 21281128]
[74]
Sarkar, S.; Faller, D.V. Telomere-homilogous G-rich oligonucleotides sensitize human ovarian cancer cells by combination therapy. Nucleic Acid Ther., 2013, 23, 167-174.
[http://dx.doi.org/10.1089/nat.2012.0401] [PMID: 23634944]
[75]
Sasaki, K.; Tsuno, N.H.; Sunami, E.; Tsurita, G.; Kawai, K.; Okaji, Y.; Nishikawa, T.; Shuno, Y.; Hongo, K.; Hiyoshi, M.; Kaneko, M.; Kitayama, J.; Takahashi, K.; Nagawa, H. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer, 2010, 10, 370.
[http://dx.doi.org/10.1186/1471-2407-10-370] [PMID: 20630104]
[76]
Cook, K.L.; Wärri, A.; Soto-Pantoja, D.R.; Clarke, P.A.G.; Cruz, M.I.; Zwart, A.; Clarke, R. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res., 2014, 20(12), 3222-3232.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3227] [PMID: 24928945]
[77]
Bonanno, L.; Favaretto, A.; Rosell, R. Platinum drugs and DNA repair mechanisms in lung cancer. Anticancer Res., 2014, 34(1), 493-501.
[PMID: 24403507]
[78]
Olaussen, K.A.; Dunant, A.; Fouret, P.; Brambilla, E.; André, F.; Haddad, V.; Taranchon, E.; Filipits, M.; Pirker, R.; Popper, H.H.; Stahel, R.; Sabatier, L.; Pignon, J.P.; Tursz, T.; Le Chevalier, T.; Soria, J.C. IALT Bio Investigators.DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N. Engl. J. Med., 2006, 355(10), 983-991.
[http://dx.doi.org/10.1056/NEJMoa060570] [PMID: 16957145]
[79]
Selvakumaran, M.; Pisarcik, D.A.; Bao, R.; Yeung, A.T.; Hamilton, T.C. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res., 2003, 63(6), 1311-1316.
[PMID: 12649192]
[80]
Curtin, N.J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer, 2012, 12(12), 801-817.
[http://dx.doi.org/10.1038/nrc3399] [PMID: 23175119]
[81]
Esteller, M. Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur. J. Cancer, 2000, 36(18), 2294-2300.
[http://dx.doi.org/10.1016/S0959-8049(00)00303-8] [PMID: 11094302]
[82]
Goode, E.L.; Ulrich, C.M.; Potter, J.D. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol. Biomarkers Prev., 2002, 11(12), 1513-1530.
[PMID: 12496039]
[83]
Maier, P.; Spier, I.; Laufs, S.; Veldwijk, M.R.; Fruehauf, S.; Wenz, F.; Zeller, W.J. Chemoprotection of human hematopoietic stem cells by simultaneous lentiviral overexpression of multidrug resistance 1 and O(6)-methylguanine-DNA methyltransferase(P140K). Gene Ther., 2010, 17(3), 389-399.
[http://dx.doi.org/10.1038/gt.2009.133] [PMID: 19865182]
[84]
Blanc, J.L.; Wager, M.; Guilhot, J.; Kusy, S.; Bataille, B.; Chantereau, T.; Lapierre, F.; Larsen, C.J.; Karayan-Tapon, L. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas. J. Neurooncol., 2004, 68(3), 275-283.
[http://dx.doi.org/10.1023/B:NEON.0000033385.37098.85] [PMID: 15332332]
[85]
Rabik, C.; Fishel, M.; Holleran, J.; Kasza, K.; Kelley, M.; Egorin, M.; Dolan, M. Enhancement of cisplatin cytotoxicity by O6-benzylguanine involves endoplasmic reticulum stress. J. Pharmacol. Exp. Ther., 2008, 327, 442-452.
[http://dx.doi.org/10.1124/jpet.108.141291] [PMID: 18664592]
[86]
Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; Bromberg, J.E.; Hau, P.; Mirimanoff, R.O.; Cairncross, J.G.; Janzer, R.C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 2005, 352(10), 997-1003.
[http://dx.doi.org/10.1056/NEJMoa043331] [PMID: 15758010]
[87]
Dong, X.; Liu, R.; Chen, W. Correlation of promoter methylation in MGMT gene with glioma risk and prognosis: a meta-analysis. Mol. Neurobiol., 2014, 52, 1887.
[http://dx.doi.org/10.1007/s12035-014-8760-3]
[88]
Shang, Y.; Cai, X.; Fan, D. Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr. Cancer Drug Targets, 2013, 13(9), 915-929.
[http://dx.doi.org/10.2174/15680096113136660097] [PMID: 24168191]
[89]
Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[90]
Chaffer, C.L.; Brueckmann, I.; Scheel, C.; Kaestli, A.J.; Wiggins, P.A.; Rodrigues, L.O.; Brooks, M.; Reinhardt, F.; Su, Y.; Polyak, K.; Arendt, L.M.; Kuperwasser, C.; Bierie, B.; Weinberg, R.A. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA, 2011, 108(19), 7950-7955.
[http://dx.doi.org/10.1073/pnas.1102454108] [PMID: 21498687]
[91]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[92]
Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: an epigenetic overview. Int. J. Mol. Sci., 2013, 14(10), 21087-21113.
[http://dx.doi.org/10.3390/ijms141021087] [PMID: 24152442]
[93]
Byler, S.; Goldgar, S.; Heerboth, S.; Leary, M.; Housman, G.; Moulton, K.; Sarkar, S. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res., 2014, 34(3), 1071-1077.
[PMID: 24596345]
[94]
Byler, S.; Sarkar, S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells? Epigenomics, 2014, 6(2), 161-165.
[http://dx.doi.org/10.2217/epi.14.4] [PMID: 24811783]
[95]
Lesniak, D.; Xu, Y.; Deschenes, J.; Lai, R.; Thoms, J.; Murray, D.; Gosh, S.; Mackey, J.R.; Sabri, S.; Abdulkarim, B. Beta1-integrin circumvents the antiproliferative effects of trastuzumab in human epidermal growth factor receptor-2-positive breast cancer. Cancer Res., 2009, 69(22), 8620-8628.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1591] [PMID: 19887601]
[96]
Sarkar, S.; Svoboda, M.; de Beaumont, R.; Freedman, A.S. The role of Aktand RAFTK in beta1 integrin mediated survival of precursor B-acute lymphoblastic leukemia cells. Leuk. Lymphoma, 2002, 43(8), 1663-1671.
[http://dx.doi.org/10.1080/1042819021000003009] [PMID: 12400610]
[97]
Wendt, M.K.; Smith, J.A.; Schiemann, W.P. Transforming growth factor-β-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene, 2010, 29(49), 6485-6498.
[http://dx.doi.org/10.1038/onc.2010.377] [PMID: 20802523]
[98]
Carraway, K.L., III; Sweeney, C. Co-opted integrin signaling in ErbB2-induced mammary tumor progression. Cancer Cell, 2006, 10(2), 93-95.
[http://dx.doi.org/10.1016/j.ccr.2006.07.015] [PMID: 16904607]
[99]
Bates, R.C.; Mercurio, A.M. The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol. Ther., 2005, 4(4), 365-370.
[http://dx.doi.org/10.4161/cbt.4.4.1655] [PMID: 15846061]
[100]
Galliher, A.J.; Schiemann, W.P. β3 integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res., 2006, 8(4), R42.
[http://dx.doi.org/10.1186/bcr1524] [PMID: 16859511]
[101]
Shibue, T.; Weinberg, R.A. Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl. Acad. Sci. USA, 2009, 106(25), 10290-10295.
[http://dx.doi.org/10.1073/pnas.0904227106] [PMID: 19502425]
[102]
Paschos, K.A.; Canovas, D.; Bird, N.C. The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cell. Signal., 2009, 21(5), 665-674.
[http://dx.doi.org/10.1016/j.cellsig.2009.01.006] [PMID: 19167485]
[103]
Läubli, H.; Borsig, L. Selectins promote tumor metastasis. Semin. Cancer Biol., 2010, 20(3), 169-177.
[http://dx.doi.org/10.1016/j.semcancer.2010.04.005] [PMID: 20452433]
[104]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[105]
Bendas, G.; Borsig, L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int. J. Cell Biol., 2012, 2012676731
[http://dx.doi.org/10.1155/2012/676731] [PMID: 22505933]
[106]
Barkan, D.; Kleinman, H.; Simmons, J.L.; Asmussen, H.; Kamaraju, A.K.; Hoenorhoff, M.J.; Liu, Z.Y.; Costes, S.V.; Cho, E.H.; Lockett, S.; Khanna, C.; Chambers, A.F.; Green, J.E. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res., 2008, 68(15), 6241-6250.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6849] [PMID: 18676848]
[107]
Ning, Y.; Gerger, A.; Zhang, W.; Hanna, D.L.; Yang, D.; Winder, T.; Wakatsuki, T.; Labonte, M.J.; Stintzing, S.; Volz, N.; Sunakawa, Y.; Stremitzer, S.; El-Khoueiry, R.; Lenz, H.J. Plastin polymorphisms predict gender- and stage-specific colon cancer recurrence after adjuvant chemotherapy. Mol. Cancer Ther., 2014, 13(2), 528-539.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0646] [PMID: 24170770]
[108]
Bégué, E.; Jean-Louis, F.; Bagot, M.; Jauliac, S.; Cayuela, J.M.; Laroche, L.; Parquet, N.; Bachelez, H.; Bensussan, A.; Courtois, G.; Michel, L. Inducible expression and pathophysiologic functions of T-plastin in cutaneous T-cell lymphoma. Blood, 2012, 120(1), 143-154.
[http://dx.doi.org/10.1182/blood-2011-09-379156] [PMID: 22627769]
[109]
Straussman, R.; Morikawa, T.; Shee, K.; Barzily-Rokni, M.; Qian, Z.R.; Du, J.; Davis, A.; Mongare, M.M.; Gould, J.; Frederick, D.T.; Cooper, Z.A.; Chapman, P.B.; Solit, D.B.; Ribas, A.; Lo, R.S.; Flaherty, K.T.; Ogino, S.; Wargo, J.A.; Golub, T.R. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 2012, 487(7408), 500-504.
[http://dx.doi.org/10.1038/nature11183] [PMID: 22763439]
[110]
Parkin, B.; Ouillette, P.; Li, Y.; Keller, J.; Lam, C.; Roulston, D.; Li, C.; Shedden, K.; Malek, S.N. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood, 2013, 121(2), 369-377.
[http://dx.doi.org/10.1182/blood-2012-04-427039] [PMID: 23175688]
[111]
Navin, N.; Krasnitz, A.; Rodgers, L.; Cook, K.; Meth, J.; Kendall, J.; Riggs, M.; Eberling, Y.; Troge, J.; Grubor, V.; Levy, D.; Lundin, P.; Månér, S.; Zetterberg, A.; Hicks, J.; Wigler, M. Inferring tumor progression from genomic heterogeneity. Genome Res., 2010, 20(1), 68-80.
[http://dx.doi.org/10.1101/gr.099622.109] [PMID: 19903760]
[112]
Campbell, P.J.; Yachida, S.; Mudie, L.J.; Stephens, P.J.; Pleasance, E.D.; Stebbings, L.A.; Morsberger, L.A.; Latimer, C.; McLaren, S.; Lin, M.L.; McBride, D.J.; Varela, I.; Nik-Zainal, S.A.; Leroy, C.; Jia, M.; Menzies, A.; Butler, A.P.; Teague, J.W.; Griffin, C.A.; Burton, J.; Swerdlow, H.; Quail, M.A.; Stratton, M.R.; Iacobuzio-Donahue, C.; Futreal, P.A. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 2010, 467(7319), 1109-1113.
[http://dx.doi.org/10.1038/nature09460] [PMID: 20981101]
[113]
Redmond, K.M.; Wilson, T.R.; Johnston, P.G.; Longley, D.B. Resistance mechanisms to cancer chemotherapy. Front. Biosci., 2008, 13, 5138-5154.
[http://dx.doi.org/10.2741/3070] [PMID: 18508576]
[114]
Wilting, R.H.; Dannenberg, J.H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist. Updat., 2012, 15(1-2), 21-38.
[http://dx.doi.org/10.1016/j.drup.2012.01.008] [PMID: 22356866]
[115]
Ji, H.; Ehrlich, L.I.; Seita, J.; Murakami, P.; Doi, A.; Lindau, P.; Lee, H.; Aryee, M.J.; Irizarry, R.A.; Kim, K.; Rossi, D.J.; Inlay, M.A.; Serwold, T.; Karsunky, H.; Ho, L.; Daley, G.Q.; Weissman, I.L.; Feinberg, A.P. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature, 2010, 467(7313), 338-342.
[http://dx.doi.org/10.1038/nature09367] [PMID: 20720541]
[116]
Feinberg, A.P.; Ohlsson, R.; Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet., 2006, 7(1), 21-33.
[http://dx.doi.org/10.1038/nrg1748] [PMID: 16369569]
[117]
Chang, H.H.; Hemberg, M.; Barahona, M.; Ingber, D.E.; Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 2008, 453(7194), 544-547.
[http://dx.doi.org/10.1038/nature06965] [PMID: 18497826]
[118]
van Steensel, B. Chromatin: constructing the big picture. EMBO J., 2011, 30(10), 1885-1895.
[http://dx.doi.org/10.1038/emboj.2011.135] [PMID: 21527910]
[119]
Taverna, S.D.; Li, H.; Ruthenburg, A.J.; Allis, C.D.; Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol., 2007, 14(11), 1025-1040.
[http://dx.doi.org/10.1038/nsmb1338] [PMID: 17984965]
[120]
Ohata, Y.; Shimada, S.; Akiyama, Y.; Mogushi, K.; Nakao, K.; Matsumura, S.; Aihara, A.; Mitsunori, Y.; Ban, D.; Ochiai, T.; Kudo, A.; Arii, S.; Tanabe, M.; Tanaka, S. Acquired resistance with epigenetic alterations under long-term anti-angiogenic therapy for hepatocellular carcinoma. Mol. Cancer Ther., 2017, 16(6), 1155-1165.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0728] [PMID: 28246302]
[121]
Xuan, W. Haiyun, Zhang.; Xiaozhuo, Chen. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2, 141-160.
[122]
Baker, E.K.; El-Osta, A. The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp. Cell Res., 2003, 290(2), 177-194.
[http://dx.doi.org/10.1016/S0014-4827(03)00342-2] [PMID: 14567978]
[123]
Kantharidis, P.; El-Osta, A.; deSilva, M.; Wall, D.M.; Hu, X.F.; Slater, A.; Nadalin, G.; Parkin, J.D.; Zalcberg, J.R. Altered methylation of the human MDR1 promoter is associated with acquired multidrug resistance. Clin. Cancer Res., 1997, 3(11), 2025-2032.
[PMID: 9815593]
[124]
Plumb, J.A.; Strathdee, G.; Sludden, J.; Kaye, S.B.; Brown, R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res., 2000, 60(21), 6039-6044.
[PMID: 11085525]
[125]
Arnold, C.N.; Goel, A.; Boland, C.R. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int. J. Cancer, 2003, 106(1), 66-73.
[http://dx.doi.org/10.1002/ijc.11176] [PMID: 12794758]
[126]
Bearzatto, A.; Szadkowski, M.; Macpherson, P.; Jiricny, J.; Karran, P. Epigenetic regulation of the MGMT and hMSH6 DNA repair genes in cells resistant to methylating agents. Cancer Res., 2000, 60(12), 3262-3270.
[PMID: 10866320]
[127]
Esteller, M.; Garcia-Foncillas, J.; Andion, E.; Goodman, S.N.; Hidalgo, O.F.; Vanaclocha, V.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med., 2000, 343(19), 1350-1354.
[http://dx.doi.org/10.1056/NEJM200011093431901] [PMID: 11070098]
[128]
Worm, J.; Kirkin, A.F.; Dzhandzhugazyan, K.N.; Guldberg, P. Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. J. Biol. Chem., 2001, 276(43), 39990-40000.
[http://dx.doi.org/10.1074/jbc.M103181200] [PMID: 11509559]
[129]
Chang, H.G.; Kim, S.J.; Chung, K.W.; Noh, D.Y.; Kwon, Y.; Lee, E.S.; Kang, H.S. Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor beta but not the estrogen receptor alpha gene. J. Mol. Med. (Berl.), 2005, 83(2), 132-139.
[http://dx.doi.org/10.1007/s00109-004-0596-2] [PMID: 15536519]
[130]
Christmann, M.; Pick, M.; Lage, H.; Schadendorf, D.; Kaina, B. Acquired resistance of melanoma cells to the antineoplastic agent fotemustine is caused by reactivation of the DNA repair gene MGMT. Int. J. Cancer, 2001, 92(1), 123-129.
[http://dx.doi.org/10.1002/1097-0215(200102)9999:9999<:AID-IJC1160>3.0.CO;2-V] [PMID: 11279615]
[131]
Izbicka, E.; MacDonald, J.R.; Davidson, K.; Lawrence, R.A.; Gomez, L.; Von Hoff, D.D. 5,6 Dihydro-5′-azacytidine (DHAC) restores androgen responsiveness in androgen-insensitive prostate cancer cells. Anticancer Res., 1999, 19(2A), 1285-1291.
[PMID: 10368689]
[132]
Sarkar, S.; Abujamra, A.L.; Loew, J.E.; Forman, L.W.; Perrine, S.P.; Faller, D.V. Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Res., 2011, 31(9), 2723-2732.
[PMID: 21868513]
[133]
Housman, G.; Mataga, A.M.; Devalapalli, A.; Heerboth, S.; Evans, L.R.; Sarkar, S. Demethylation and re-expression of tumor suppressor genes by HDAC inhibitors and calpain inhibitors in cancer cells: A study related to synergistic type growth inhibition and reduction of motility. Proceedings of The Epigenetics World Congress, MA, USA2011.
[134]
Sarkar, S.; Goldgar, S.; Byler, S.; Rosenthal, S.; Heerboth, S. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics, 2013, 5(1), 87-94.
[http://dx.doi.org/10.2217/epi.12.68] [PMID: 23414323]
[135]
Juergens, R.A.; Wrangle, J.; Vendetti, F.P.; Murphy, S.C.; Zhao, M.; Coleman, B.; Sebree, R.; Rodgers, K.; Hooker, C.M.; Franco, N.; Lee, B.; Tsai, S.; Delgado, I.E.; Rudek, M.A.; Belinsky, S.A.; Herman, J.G.; Baylin, S.B.; Brock, M.V.; Rudin, C.M. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov., 2011, 1(7), 598-607.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0214] [PMID: 22586682]
[136]
Johannessen, C.M.; Johnson, L.A.; Piccioni, F.; Townes, A.; Frederick, D.T.; Donahue, M.K.; Narayan, R.; Flaherty, K.T.; Wargo, J.A.; Root, D.E.; Garraway, L.A. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature, 2013, 504(7478), 138-142.
[http://dx.doi.org/10.1038/nature12688] [PMID: 24185007]
[137]
Cacan, E.; Ali, M.W.; Boyd, N.H.; Hooks, S.B.; Greer, S.F. Inhibition of HDAC1 and DNMT1 modulate RGS10 expression and decrease ovarian cancer chemoresistance. PLoS One, 2014, 9(1)e87455
[http://dx.doi.org/10.1371/journal.pone.0087455] [PMID: 24475290]
[138]
Lachner, M.; O’Sullivan, R.J.; Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci., 2003, 116(Pt 11), 2117-2124.
[http://dx.doi.org/10.1242/jcs.00493] [PMID: 12730288]
[139]
Yu, J.; Yu, J.; Rhodes, D.R.; Tomlins, S.A.; Cao, X.; Chen, G.; Mehra, R.; Wang, X.; Ghosh, D.; Shah, R.B.; Varambally, S.; Pienta, K.J.; Chinnaiyan, A.M. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res., 2007, 67(22), 10657-10663.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2498] [PMID: 18006806]
[140]
Tan, J.; Yang, X.; Zhuang, L.; Jiang, X.; Chen, W.; Lee, P.L.; Karuturi, R.K.; Tan, P.B.; Liu, E.T.; Yu, Q. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev., 2007, 21(9), 1050-1063.
[http://dx.doi.org/10.1101/gad.1524107] [PMID: 17437993]
[141]
Miranda, T.B.; Cortez, C.C.; Yoo, C.B.; Liang, G.; Abe, M.; Kelly, T.K.; Marquez, V.E.; Jones, P.A. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther., 2009, 8(6), 1579-1588.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0013] [PMID: 19509260]
[142]
Fiskus, W.; Wang, Y.; Sreekumar, A.; Buckley, K.M.; Shi, H.; Jillella, A.; Ustun, C.; Rao, R.; Fernandez, P.; Chen, J.; Balusu, R.; Koul, S.; Atadja, P.; Marquez, V.E.; Bhalla, K.N. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood, 2009, 114(13), 2733-2743.
[http://dx.doi.org/10.1182/blood-2009-03-213496] [PMID: 19638619]
[143]
Suvà, M.L.; Riggi, N.; Janiszewska, M.; Radovanovic, I.; Provero, P.; Stehle, J.C.; Baumer, K.; Le Bitoux, M.A.; Marino, D.; Cironi, L.; Marquez, V.E.; Clément, V.; Stamenkovic, I. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res., 2009, 69(24), 9211-9218.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1622] [PMID: 19934320]
[144]
Bressi, J.C.; Jennings, A.J.; Skene, R.; Wu, Y.; Melkus, R.; De Jong, R.; O’Connell, S.; Grimshaw, C.E.; Navre, M.; Gangloff, A.R. Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett., 2010, 20(10), 3142-3145.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.091] [PMID: 20392638]
[145]
Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W.R. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012, 481(7381), 335-340.
[http://dx.doi.org/10.1038/nature10728] [PMID: 22230954]
[146]
Guo, L.; Han, A.; Bates, D.L.; Cao, J.; Chen, L. Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Proc. Natl. Acad. Sci. USA, 2007, 104(11), 4297-4302.
[http://dx.doi.org/10.1073/pnas.0608041104] [PMID: 17360518]
[147]
Ouyang, H.; Ali, Y.O.; Ravichandran, M.; Dong, A.; Qiu, W.; MacKenzie, F.; Dhe-Paganon, S.; Arrowsmith, C.H.; Zhai, R.G. Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini. J. Biol. Chem., 2012, 287(4), 2317-2327.
[http://dx.doi.org/10.1074/jbc.M111.273730] [PMID: 22069321]
[148]
Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N.P.; Lewis, T.A.; Maglathin, R.L.; McLean, T.H.; Bochkarev, A.; Plotnikov, A.N.; Vedadi, M.; Arrowsmith, C.H. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem., 2008, 283(17), 11355-11363.
[http://dx.doi.org/10.1074/jbc.M707362200] [PMID: 18285338]
[149]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334.
[http://dx.doi.org/10.1016/j.str.2004.04.012] [PMID: 15242608]
[150]
Hudson, B.P.; Martinez-Yamout, M.A.; Dyson, H.J.; Wright, P.E. Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J. Mol. Biol., 2000, 304(3), 355-370.
[http://dx.doi.org/10.1006/jmbi.2000.4207] [PMID: 11090279]
[151]
Schuetz, A.; Bernstein, G.; Dong, A.; Antoshenko, T.; Wu, H.; Loppnau, P.; Bochkarev, A.; Plotnikov, A.N. Crystal structure of a binary complex between human GCN5 histone acetyltransferase domain and acetyl coenzyme A. Proteins, 2007, 68(1), 403-407.
[http://dx.doi.org/10.1002/prot.21407] [PMID: 17410582]
[152]
Clements, A.; Rojas, J.R.; Trievel, R.C.; Wang, L.; Berger, S.L.; Marmorstein, R. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO J., 1999, 18(13), 3521-3532.
[http://dx.doi.org/10.1093/emboj/18.13.3521] [PMID: 10393169]
[153]
Zeng, L.; Li, J.; Muller, M.; Yan, S.; Mujtaba, S.; Pan, C.; Wang, Z.; Zhou, M.M. Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J. Am. Chem. Soc., 2005, 127(8), 2376-2377.
[http://dx.doi.org/10.1021/ja044885g] [PMID: 15724976]
[154]
Freedman, S.J.; Sun, Z.Y.J.; Poy, F.; Kung, A.L.; Livingston, D.M.; Wagner, G.; Eck, M.J. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 5367-5372.
[http://dx.doi.org/10.1073/pnas.082117899] [PMID: 11959990]
[155]
Liu, X.; Wang, L.; Zhao, K.; Thompson, P.R.; Hwang, Y.; Marmorstein, R.; Cole, P.A. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 2008, 451(7180), 846-850.
[http://dx.doi.org/10.1038/nature06546] [PMID: 18273021]
[156]
Sharpe, B.K.; Matthews, J.M.; Kwan, A.H.; Newton, A.; Gell, D.A.; Crossley, M.; Mackay, J.P. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution. Structure, 2002, 10(5), 639-648.
[http://dx.doi.org/10.1016/S0969-2126(02)00757-8] [PMID: 12015147]
[157]
Sachchidanand.; Resnick-Silverman, L.; Yan, S.; Mutjaba, S.; Liu, W.J.; Zeng, L.; Manfredi, J.J.; Zhou, M.M. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Chem. Biol., 2006, 13, 81-90.
[http://dx.doi.org/10.1016/j.chembiol.2005.10.014]
[158]
Andreoli, F.; Barbosa, A.J.; Parenti, M.D.; Del Rio, A. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Curr. Pharm. Des., 2013, 19(4), 578-613.
[http://dx.doi.org/10.2174/138161213804581918] [PMID: 23016851 ]
[159]
Holbert, M.A.; Sikorski, T.; Carten, J.; Snowflack, D.; Hodawadekar, S.; Marmorstein, R. The human monocytic leukemia zinc finger histone acetyltransferase domain contains DNA-binding activity implicated in chromatin targeting. J. Biol. Chem., 2007, 282(50), 36603-36613.
[http://dx.doi.org/10.1074/jbc.M705812200] [PMID: 17925393]
[160]
Kadlec, J.; Hallacli, E.; Lipp, M.; Holz, H.; Sanchez-Weatherby, J.; Cusack, S.; Akhtar, A. Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1. Nat. Struct. Mol. Biol., 2011, 18(2), 142-149.
[http://dx.doi.org/10.1038/nsmb.1960] [PMID: 21217699]
[161]
Wu, H.; Min, J.; Lunin, V.V.; Antoshenko, T.; Dombrovski, L.; Zeng, H.; Allali-Hassani, A.; Campagna-Slater, V.; Vedadi, M.; Arrowsmith, C.H.; Plotnikov, A.N.; Schapira, M. Structural biology of human H3K9 methyltransferases. PLoS One, 2010, 5(1)e8570
[http://dx.doi.org/10.1371/journal.pone.0008570] [PMID: 20084102]
[162]
Syeda, F.; Fagan, R.L.; Wean, M.; Avvakumov, G.V.; Walker, J.R.; Xue, S.; Dhe-Paganon, S.; Brenner, C. The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1. J. Biol. Chem., 2011, 286(17), 15344-15351.
[http://dx.doi.org/10.1074/jbc.M110.209882] [PMID: 21389349]
[163]
Dong, A.; Yoder, J.A.; Zhang, X.; Zhou, L.; Bestor, T.H.; Cheng, X. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res., 2001, 29(2), 439-448.
[http://dx.doi.org/10.1093/nar/29.2.439] [PMID: 11139614]
[164]
Otani, J.; Nankumo, T.; Arita, K.; Inamoto, S.; Ariyoshi, M.; Shirakawa, M. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep., 2009, 10(11), 1235-1241.
[http://dx.doi.org/10.1038/embor.2009.218] [PMID: 19834512]
[165]
Wu, H.; Zeng, H.; Lam, R.; Tempel, W.; Amaya, M.F.; Xu, C.; Dombrovski, L.; Qiu, W.; Wang, Y.; Min, J. Structural and histone binding ability characterizations of human PWWP domains. PLoS One, 2011, 6(6)e18919
[http://dx.doi.org/10.1371/journal.pone.0018919] [PMID: 21720545]
[166]
Ooi, S.K.T.; Qiu, C.; Bernstein, E.; Li, K.; Jia, D.; Yang, Z.; Erdjument-Bromage, H.; Tempst, P.; Lin, S.P.; Allis, C.D.; Cheng, X.; Bestor, T.H. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 2007, 448(7154), 714-717.
[http://dx.doi.org/10.1038/nature05987] [PMID: 17687327]
[167]
Jia, D.; Jurkowska, R.Z.; Zhang, X.; Jeltsch, A.; Cheng, X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 2007, 449(7159), 248-251.
[http://dx.doi.org/10.1038/nature06146] [PMID: 17713477]
[168]
Sarkar, S.; Longacre, M.; Tatur, N.; Heerboth, S.; Lapinska, K. Histone deacetylases (HDACs): Function, mechanism, & inhibition.In: Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley: Chichester, UK, 2014, pp. 1-9.
[169]
Zeller, C.; Brown, R. Therapeutic modulation of epigenetic drivers of drug resistance in ovarian cancer. Ther. Adv. Med. Oncol., 2010, 2(5), 319-329.
[http://dx.doi.org/10.1177/1758834010375759] [PMID: 21789144]
[170]
Nakajima, G.; Hayashi, K.; Xi, Y.; Kudo, K.; Uchida, K.; Takasaki, K.; Yamamoto, M.; Ju, J. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 2006, 3(5), 317-324.
[PMID: 18172508]
[171]
Ragusa, M.; Majorana, A.; Statello, L.; Maugeri, M.; Salito, L.; Barbagallo, D.; Guglielmino, M.R.; Duro, L.R.; Angelica, R.; Caltabiano, R.; Biondi, A.; Di Vita, M.; Privitera, G.; Scalia, M.; Cappellani, A.; Vasquez, E.; Lanzafame, S.; Basile, F.; Di Pietro, C.; Purrello, M. Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol. Cancer Ther., 2010, 9(12), 3396-3409.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0137] [PMID: 20881268]
[172]
Cai, J.; Yang, C.; Yang, Q.; Ding, H.; Jia, J.; Guo, J.; Wang, J.; Wang, Z. Deregulation of let-7e in epithelial ovarian cancer promotes the development of resistance to cisplatin. Oncogenesis, 2013, 2e75
[http://dx.doi.org/10.1038/oncsis.2013.39] [PMID: 24100610]
[173]
Kovalchuk, O.; Filkowski, J.; Meservy, J.; Ilnytskyy, Y.; Tryndyak, V.P.; Chekhun, V.F.; Pogribny, I.P. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther., 2008, 7(7), 2152-2159.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0021] [PMID: 18645025]
[174]
Takwi, A.A.; Wang, Y.M.; Wu, J.; Michaelis, M.; Cinatl, J.; Chen, T. miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene, 2014, 33(28), 3717-3729.
[http://dx.doi.org/10.1038/onc.2013.330] [PMID: 23934188]
[175]
Kalinowski, F.C.; Giles, K.M.; Candy, P.A.; Ali, A.; Ganda, C.; Epis, M.R.; Webster, R.J.; Leedman, P.J. Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7. PLoS One, 2012, 7(10)e47067
[http://dx.doi.org/10.1371/journal.pone.0047067] [PMID: 23115635]
[176]
Chen, G.; Umelo, I.A.; Lv, S.; Teugels, E.; Fostier, K.; Kronenberger, P.; Dewaele, A.; Sadones, J.; Geers, C.; De Greve, J. miR-146a inhibits cell growth, cell migration and induces apoptosis in nonsmall cell lung cancer cells. PLoS One, 2013, 8, 1-13.
[177]
Blower, P.E.; Chung, J.H.; Verducci, J.S.; Lin, S.; Park, J.K.; Dai, Z.; Liu, C.G.; Schmittgen, T.D.; Reinhold, W.C.; Croce, C.M.; Weinstein, J.N.; Sadee, W. MicroRNAs modulate the chemosensitivity of tumor cells. Mol. Cancer Ther., 2008, 7(1), 1-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0573] [PMID: 18187804]
[178]
Li, Y.; VandenBoom, T.G., II; Kong, D.; Wang, Z.; Ali, S.; Philip, P.A.; Sarkar, F.H. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res., 2009, 69(16), 6704-6712.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1298] [PMID: 19654291]
[179]
Weeraratne, S.D.; Amani, V.; Neiss, A.; Teider, N.; Scott, D.K.; Pomeroy, S.L.; Cho, Y.J. miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro-oncol., 2011, 13(2), 165-175.
[http://dx.doi.org/10.1093/neuonc/noq179] [PMID: 21177782]
[180]
Sorrentino, A.; Liu, C.G.; Addario, A.; Peschle, C.; Scambia, G.; Ferlini, C. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol. Oncol., 2008, 111(3), 478-486.
[http://dx.doi.org/10.1016/j.ygyno.2008.08.017] [PMID: 18823650]
[181]
Costa, P.M.; Cardoso, A.L.; Nóbrega, C.; Pereira de Almeida, L.F.; Bruce, J.N.; Canoll, P.; Pedroso de Lima, M.C. MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Hum. Mol. Genet., 2013, 22(5), 904-918.
[http://dx.doi.org/10.1093/hmg/dds496] [PMID: 23201752]
[182]
Zhao, J.J.; Lin, J.; Yang, H.; Kong, W.; He, L.; Ma, X.; Coppola, D.; Cheng, J.Q. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem., 2008, 283(45), 31079-31086.
[http://dx.doi.org/10.1074/jbc.M806041200] [PMID: 18790736]
[183]
Miller, T.E.; Ghoshal, K.; Ramaswamy, B.; Roy, S.; Datta, J.; Shapiro, C.L.; Jacob, S.; Majumder, S. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem., 2008, 283(44), 29897-29903.
[http://dx.doi.org/10.1074/jbc.M804612200] [PMID: 18708351]
[184]
Ward, A.; Balwierz, A.; Zhang, J.D.; Küblbeck, M.; Pawitan, Y.; Hielscher, T.; Wiemann, S.; Sahin, Ö. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene, 2013, 32(9), 1173-1182.
[http://dx.doi.org/10.1038/onc.2012.128] [PMID: 22508479]
[185]
Yang, Y.P.; Chien, Y.; Chiou, G.Y.; Cherng, J.Y.; Wang, M.L.; Lo, W.L.; Chang, Y.L.; Huang, P.I.; Chen, Y.W.; Shih, Y.H.; Chen, M.T.; Chiou, S.H. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials, 2012, 33(5), 1462-1476.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.071] [PMID: 22098779]
[186]
Gong, C.; Yao, Y.; Wang, Y.; Liu, B.; Wu, W.; Chen, J.; Su, F.; Yao, H.; Song, E. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J. Biol. Chem., 2011, 286(21), 19127-19137.
[http://dx.doi.org/10.1074/jbc.M110.216887] [PMID: 21471222]
[187]
Jung, E.J.; Santarpia, L.; Kim, J.; Esteva, F.J.; Moretti, E.; Buzdar, A.U.; Di Leo, A.; Le, X.F.; Bast, R.C., Jr; Park, S.T.; Pusztai, L.; Calin, G.A. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer, 2012, 118(10), 2603-2614.
[http://dx.doi.org/10.1002/cncr.26565] [PMID: 22370716]
[188]
Pouliot, L.M.; Shen, D.W.; Suzuki, T.; Hall, M.D.; Gottesman, M.M. Contributions of microRNA dysregulation to cisplatin resistance in adenocarcinoma cells. Exp. Cell Res., 2013, 319(4), 566-574.
[http://dx.doi.org/10.1016/j.yexcr.2012.10.012] [PMID: 23137650]
[189]
Druker, B.J. Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opin. Pharmacother., 2003, 4(6), 963-971.
[http://dx.doi.org/10.1517/14656566.4.6.963] [PMID: 12783592]
[190]
Xu, C.; Fu, H.; Gao, L.; Wang, L.; Wang, W.; Li, J.; Li, Y.; Dou, L.; Gao, X.; Luo, X.; Jing, Y.; Chim, C.S.; Zheng, X.; Yu, L. BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene, 2014, 33(1), 44-54.
[http://dx.doi.org/10.1038/onc.2012.557] [PMID: 23208504]
[191]
Li, Y.; Yuan, Y.; Tao, K.; Wang, X.; Xiao, Q.; Huang, Z.; Zhong, L.; Cao, W.; Wen, J.; Feng, W. Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate. PLoS One, 2013, 8(4)e61858
[http://dx.doi.org/10.1371/journal.pone.0061858] [PMID: 23613955]
[192]
Rao, X.; Di Leva, G.; Li, M.; Fang, F.; Devlin, C.; Hartman-Frey, C.; Burow, M.E.; Ivan, M.; Croce, C.M.; Nephew, K.P. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene, 2011, 30(9), 1082-1097.
[http://dx.doi.org/10.1038/onc.2010.487] [PMID: 21057537]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy