Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Chemical Properties and Therapeutic Potential of Citral, a Monoterpene Isolated from Lemongrass

Author(s): Sandeep Sharma, Shagufta Habib, Debasis Sahu and Jeena Gupta*

Volume 17, Issue 1, 2021

Published on: 27 December, 2019

Page: [2 - 12] Pages: 11

DOI: 10.2174/1573406416666191227111106

Price: $65

Abstract

Background: Citral is one of the main components of lemongrass oil present at a concentration of 65-85% approximately and is generally separated by steam refining. It is an important component in the manufacturing of scents, citrus chemicals, cosmetics, food and pharmaceutical products.

Objectives: This article aims at reviewing the published literature to highlight the metabolism, extraction strategies and therapeutic significance of citral for improving the scope of its application in the food and pharma industry.

Discussions: Apart from steam refining, there are other techniques like solvent extraction, supercritical fluid extraction and ultrasonication by which citral can be extracted and the method of extraction defines its quality. It is an unstable molecule and undergoes rapid deterioration on exposure to air. Citral is biosynthesized by the plants through the 5 carbon precursor isopentenyl diphosphate (IPP) units utilizing two diverse biochemical pathways, acetate– mevalonate (acetate– MVA) pathway or 2C-methylerythritol-4-phosphate (MEP). Orally Citral was absolutely digested in the gastrointestinal tract and its metabolism leads to the discharge of metabolites which include a number of acids and a biliary glucuronide. There is no scientific evidence about the long term bioavailability of citral in the body and it has no adverse effect on tissue related to its accumulation and delayed excretion. Citral exhibits various important therapeutic properties like antimicrobial, antioxidant, anticancer, anti-diabetic and anti-inflammatory.

Conclusion: Citral is a potent biomolecule with various important biological activities and therapeutic implications. Strategies are required to increase the stability of citral which could increase its applications.

Keywords: Citral, antimicrobial, antioxidant, anticancer, anti-diabetic, anti-inflammatory.

Graphical Abstract
[1]
Grayson, D.H. Monoterpenoids. Nat. Prod. Rep., 1988, 5(5), 419.
[http://dx.doi.org/10.1039/np9880500419]
[2]
Oliveira Fde, A.; Andrade, L.N.; de Sousa, E.B.; de Sousa, D.P. Anti-ulcer activity of essential oil constituents. Molecules, 2014, 19(5), 5717-5747.
[http://dx.doi.org/10.3390/molecules19055717] [PMID: 24802985]
[3]
Crowell, P.L. Prevention and therapy of cancer by dietary monoterpenes. J. Nutr., 1999, 129(3), 775S-778S.
[http://dx.doi.org/10.1093/jn/129.3.775S] [PMID: 10082788]
[4]
Mills, J.J.; Jirtle, R.L.; Boyer, I. J. Mechanisms of Liver Tumor Promotion., 1995, 199-226.
[http://dx.doi.org/10.1016/B978-012385355-4/50010-2]
[5]
Carlini, E.; De, D.P. Contar, J.; Silva-Filho, A.R.; Da Silveira-Filho, N.G.; Frochtengarten, M.L.; Bueno, O.F. Pharmacology of Lemongrass (Cymbopogon Citratus Stapf). I. Effects of Teas Prepared from the Leaves on Laboratory Animals. J. Ethnopharmacol., 1986, 17(1), 37-64.
[http://dx.doi.org/10.1016/0378-8741(86)90072-3] [PMID: 3762195]
[6]
Bachiega, T.F.; Sforcin, J.M. Lemongrass and citral effect on cytokines production by murine macrophages. J. Ethnopharmacol., 2011, 137(1), 909-913.
[http://dx.doi.org/10.1016/j.jep.2011.07.021] [PMID: 21782918]
[7]
Shi, C.; Song, K.; Zhang, X.; Sun, Y.; Sui, Y.; Chen, Y.; Jia, Z.; Sun, H.; Sun, Z.; Xia, X. Antimicrobial Activity and Possible Mechanism of action of citral against cronobacter sakazakii. PLoS One, 2016, 11(7)e0159006
[http://dx.doi.org/10.1371/journal.pone.0159006] [PMID: 27415761]
[8]
Somolinos, M.; García, D.; Condón, S.; Mackey, B.; Pagán, R. Inactivation of Escherichia coli by citral. J. Appl. Microbiol., 2010, 108(6), 1928-1939.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04597.x] [PMID: 19891710]
[9]
Silva Cde, B.; Guterres, S.S.; Weisheimer, V.; Schapoval, E.E. Antifungal activity of the lemongrass oil and citral against Candida spp. Braz. J. Infect. Dis., 2008, 12(1), 63-66.
[http://dx.doi.org/10.1590/s1413-86702008000100014] [PMID: 18553017]
[10]
Carbajal, D.; Casaco, A.; Arruzazabala, L.; Gonzalez, R.; Tolon, Z. Pharmacological study of Cymbopogon citratus leaves. J. Ethnopharmacol., 1989, 25(1), 103-107.
[http://dx.doi.org/10.1016/0378-8741(89)90049-4] [PMID: 2716341]
[11]
Schaneberg, B.T.; Khan, I.A. Comparison of extraction methods for marker compounds in the essential oil of lemon grass by GC. J. Agric. Food Chem., 2002, 50(6), 1345-1349.
[http://dx.doi.org/10.1021/jf011078h] [PMID: 11879000]
[12]
Blanco, M.M.; Costa, C.A.; Freire, A.O.; Santos, J.G., Jr; Costa, M. Neurobehavioral effect of essential oil of Cymbopogon citratus in mice. Phytomedicine, 2009, 16(2-3), 265-270.
[http://dx.doi.org/10.1016/j.phymed.2007.04.007] [PMID: 17561386]
[13]
Velluti, A.; Sanchis, V.; Ramos, A.J.; Marín, S. Effect of essential oils of cinnamon, clove, lemon grass, oregano and palmarosa on growth of and fumonisin B1 production byfusarium verticillioides in maize. J. Sci. Food Agric., 2004, 84(10), 1141-1146.
[http://dx.doi.org/10.1002/jsfa.1769]
[14]
Lalko, J.; Api, A.M. Citral: identifying a threshold for induction of dermal sensitization. Regul. Toxicol. Pharmacol., 2008, 52(1), 62-73.
[http://dx.doi.org/10.1016/j.yrtph.2008.01.006] [PMID: 18353514]
[15]
Wannissorn, B.; Jarikasem, S.; Soontorntanasart, T. Antifungal activity of lemon grass oil and lemon grass oil cream. Phytother. Res., 1996, 10(7), 551-554.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199611)10:7<551:AID-PTR1908>3.0.CO;2-Q]
[16]
Elgendy, E. Epoxidation reactions of natural limonene, piperine and piperic acid, as intercalative alkylating agents for DNA. Boll. Chim. Farm., 1997, 136(8), 532-534.
[17]
Richter, S.; Gatto, B.; Fabris, D.; Takao, K.; Kobayashi, S.; Palumbo, M. Clerocidin alkylates DNA through its epoxide function: evidence for a fine tuned mechanism of action. Nucleic Acids Res., 2003, 31(17), 5149-5156.
[http://dx.doi.org/10.1093/nar/gkg696] [PMID: 12930966]
[18]
Singh-Sangwan, N.; Sangwan, R.S.; Luthra, R.; Thakur, R.S. Geraniol dehydrogenase: a determinant of essential oil quality in lemongrass1. Planta Med., 1993, 59(2), 168-170.
[http://dx.doi.org/10.1055/s-2006-959636] [PMID: 17230350]
[19]
Iijima, Y.; Gang, D.R.; Fridman, E.; Lewinsohn, E.; Pichersky, E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol., 2004, 134(1), 370-379.
[http://dx.doi.org/10.1104/pp.103.032946] [PMID: 14657409]
[20]
Yang, T.; Li, J.; Wang, H.; Zeng, Y. A geraniol-synthase gene from. Phytochemistry, 2005, 66(3), 285-293.
[http://dx.doi.org/10.1016/j.phytochem.2004.12.004] [PMID: 15680985]
[21]
Ito, M.; Honda, G. Geraniol synthases from perilla and their taxonomical significance. Phytochemistry, 2007, 68(4), 446-453.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.006] [PMID: 17187833]
[22]
Rohmer, M.; Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep., 1999, 16(5), 565-574.
[http://dx.doi.org/10.1039/a709175c] [PMID: 10584331]
[23]
McCaskill, D.; Croteau, R. some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol., 1998, 16(8), 349-355.
[http://dx.doi.org/10.1016/S0167-7799(98)01231-1]
[24]
Luthra, R.; Luthra, P.; Kumar, S. Redefined role of mevalonateisoprenoid pathway in terpenoid biosynthesis in higher plants. Curr. Sci., 1999, 76, 133-135.
[25]
Gupta, A.K.; Ganjewala, D. A Study on Biosynthesis of “citral” in Lemongrass (C. Flexuosus). Cv. Suvarna. Acta Physiol. Plant., 2015, 37(11), 240.
[http://dx.doi.org/10.1007/s11738-015-1989-2]
[26]
Ganjewala, D.; Kumar, S.; Luthra, R. An account of cloned genes of methyl-erythritol-4-phosphate pathway of isoprenoid biosynthesis in plants. Curr. Issues Mol. Biol., 2009, 11, i35-i45.
[http://dx.doi.org/10.21775/9781912530069.05]
[27]
Akhila, A. Metabolic engineering of biosynthetic pathways leading to isoprenoids: Mono-and sesquiterpenes in plastids and cytosol. J. Plant Interact., 2007, 2(4), 195-204.
[http://dx.doi.org/10.1080/17429140701670953]
[28]
Ramak, P.; Kazempour Osaloo, S.; Ebrahimzadeh, H.; Sharifi, M.; Behmanesh, M. Inhibition of the mevalonate pathway enhances carvacrol biosynthesis and DXR gene expression in shoot cultures of Satureja khuzistanica Jamzad. J. Plant Physiol., 2013, 170(13), 1187-1193.
[http://dx.doi.org/10.1016/j.jplph.2013.03.013] [PMID: 23611428]
[29]
Akhila, A. Biosynthesis of Monoterpenes in Cymbopogon Winterianus. Phytochemistry, 1986, 25(2), 421-424.
[http://dx.doi.org/10.1016/S0031-9422(00)85493-X]
[30]
Singh, N.; Luthra, R.; Sangwan, R.S. Effect of leaf position and age on the essential oil quantity and quality in lemongrass (Cymbopogon flexuosus)1. Planta Med., 1989, 55(3), 254-256.
[http://dx.doi.org/10.1055/s-2006-961997] [PMID: 17262411]
[31]
Singh, N.; Luthra, R.; Sangwan, R. Oxidative Pathways and Essential Oil Biosynthesis in the Developing Lemongrass (Cymbopogon Flexuosus Stapf). Plant Physiol. Biochem., 1990, 28, 703-710.
[32]
Ganjewala, D.; Luthra, R. essential oil biosynthesis and metabolism of geranyl aceate and geraniol in developing cymbopogon flexuosus (Nees Ex Steud) wats mutant Cv. GRL-1 Leaf. Am. J. Plant Physiol., 2007, 2(4), 269-275.
[http://dx.doi.org/10.3923/ajpp.2007.269.275]
[33]
Ganjewala, D.; Luthra, R. Inhibitors of essential oil biosynthesis in cymbopogon flexuosus nees Ex. steud. mutant Cv. GRL-1 leaves. Am. J. Plant Physiol., 2007, 2(3), 227-232.
[http://dx.doi.org/10.3923/ajpp.2007.227.232]
[34]
Dubey, V.S.; Luthra, R. Biotransformation of geranyl acetate to geraniol during palmarosa (Cymbopogon martinii, Roxb. wats. var. motia) inflorescence development. Phytochemistry, 2001, 57(5), 675-680.
[http://dx.doi.org/10.1016/S0031-9422(01)00122-4] [PMID: 11397433]
[35]
Sargenti, S.R.; Lanças, F.M. Supercritical Fluid Extraction OfCymbopogon Citratus (DC.) Stapf. Chromatographia, 1997, 46(5-6), 285-290.
[http://dx.doi.org/10.1007/BF02496320]
[36]
Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E. Comparative analysis of the oil and supercritical CO(2) extract of Cymbopogon citratus Stapf. Nat. Prod. Res., 2006, 20(5), 455-459.
[http://dx.doi.org/10.1080/14786410500277837] [PMID: 16644543]
[37]
Silou, T.; Malanda, M.; Loubaki, L. Optimisation De l’extraction De l’huile Essentielle De Cymbopogon Citratus grâce à Un Plan Factoriel Complet 23. J. Food Eng., 2004, 65(2), 219-223.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.01.018]
[38]
Parikh, J.K.; Desai, M.A. Hydrodistillation of Essential Oil from Cymbopogon Flexuosus., 2011, 7(1)
[http://dx.doi.org/10.2202/1556-3758.2067]
[39]
Paviani, L.; Pergher, S.B.C.; Dariva, C. Application of molecular sieves in the fractionation of lemongrass oil from high-pressure carbon dioxide extraction. Braz. J. Chem. Eng., 2006, 23(2), 219-225.
[http://dx.doi.org/10.1590/S0104-66322006000200009]
[40]
Carlson, L.H.C.; Machado, R.A.F.; Spricigo, C.B.; Pereira, L.K.; Bolzan, A. Extraction of lemongrass essential oil with dense carbon dioxide. J. Supercrit. Fluids, 2001, 21(1), 33-39.
[http://dx.doi.org/10.1016/S0896-8446(01)00085-7]
[41]
Sovová, H.; Aleksovski, S.A. Mathematical model for hydrodistillation of essential oils. Flavour Fragrance J., 2006, 21(6), 881-889.
[http://dx.doi.org/10.1002/ffj.1729]
[42]
Cassel, E.; Vargas, R.; Martinez, N.; Lorenzo, D.; Dellacassa, E. Steam distillation modeling for essential oil extraction process. Ind. Crops Prod., 2009, 29(1), 171-176.
[http://dx.doi.org/10.1016/j.indcrop.2008.04.017]
[43]
Oliveira, E.L.; Silvestre, A.J.; Silva, C.M. Review of kinetic models for supercritical fluid extraction. Chem. Eng. Res. Des., 2011, 89(7), 1104-1117.
[http://dx.doi.org/10.1016/j.cherd.2010.10.025]
[44]
Desai, M.A.; Parikh, J.; De, A.K. Modelling and optimization studies on extraction of lemongrass oil from cymbopogon flexuosus (Steud.). Wats. Chem. Eng. Res. Des., 2014, 92(5), 793-803.
[http://dx.doi.org/10.1016/j.cherd.2013.08.011]
[45]
Desai, M.A.; Parikh, J. Microwave assisted extraction of essential oil from cymbopogon flexuosus (Steud.) Wats.: A parametric and comparative study. Sep. Sci. Technol., 2012, 47(13), 1963-1970.
[http://dx.doi.org/10.1080/01496395.2012.659785]
[46]
Desai, M.A.; Parikh, J. Extraction of essential oil from leaves of lemongrass using microwave radiation: optimization, comparative, kinetic, and biological studies. ACS Sustain. Chem.& Eng., 2015, 3(3), 421-431.
[http://dx.doi.org/10.1021/sc500562a]
[47]
Rao, H.; Kalyani, G.; King, P. Isolation of citral from lemongrass oil using steam distillation: statistical optimization by response surface methodology. Int. J. Chem. Sci., 2015, 13(3), 1305-1314.
[48]
Clark, B.; Powell, C.; Radford, T. The acid catalyzed cyclization of Citral. Tetrahedron, 1977, 33(17), 2187-2191.
[http://dx.doi.org/10.1016/0040-4020(77)80002-1]
[49]
Kimura, K.; Nishimura, H.; Iwata, I.; Mizutani, J. Deterioration mechanism of lemon flavor. 2. Formation mechanism of off-odor substances arising from Citral. J. Agric. Food Chem., 1983, 31(4), 801-804.
[http://dx.doi.org/10.1021/jf00118a030]
[50]
Kimura, K. Nishimura, H.; Iwata, I.; Mizutani, J. Studies on the Deterioration mechanism of lemon flavor. Part III. Identification of acidic substances from deteriorated citral and effects of antioxidants on their formation. Agric. Biol. Chem., 1983, 47(7), 1661-1663.
[http://dx.doi.org/10.1271/bbb1961.47.1661]
[51]
Schieberle, P.; Ehrmeier, H.; Grosch, W. Aromastoffe aus dem säurekatalysierten abbau von Citral. Z. Lebensm. Unters. Forsch., 1988, 187(1), 35-39.
[http://dx.doi.org/10.1007/BF01454320]
[52]
Schieberle, P.; Grosch, W. Identification of potent flavor compounds formed in an aqueous lemon oil/citric acid emulsion. J. Agric. Food Chem., 1988, 36(4), 797-800.
[http://dx.doi.org/10.1021/jf00082a031]
[53]
Tan, C.-T. Beverage Emulsions, 2003.
[http://dx.doi.org/10.1201/9780203913222.ch12]
[54]
Ueno, T.; Masuda, H.; Ho, C-T. Formation mechanism of p-methylacetophenone from citral via a tert-alkoxy radical intermediate. J. Agric. Food Chem., 2004, 52(18), 5677-5684.
[http://dx.doi.org/10.1021/jf035517j] [PMID: 15373409]
[55]
Mcclements, D.; Decker, E. Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. J. Food Sci., 2000, 65(8), 1270-1282.
[http://dx.doi.org/10.1111/j.1365-2621.2000.tb10596.x]
[56]
Moreau, L.; Kim, H.J.; Decker, E.A.; McClements, D.J. Production and characterization of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-pectin membranes. J. Agric. Food Chem., 2003, 51(22), 6612-6617.
[http://dx.doi.org/10.1021/jf034332+] [PMID: 14558785]
[57]
Ogawa, S.; Decker, E.A.; McClements, D.J. Production and characterization of O/W emulsions containing droplets stabilized by lecithin-chitosan-pectin mutilayered membranes. J. Agric. Food Chem., 2004, 52(11), 3595-3600.
[http://dx.doi.org/10.1021/jf034436k] [PMID: 15161236]
[58]
Caruso, F. generation of complex colloids by polyelectrolyteassisted electrostatic self-assembly. Aust. J. Chem., 2001, 54(6), 349.
[http://dx.doi.org/10.1071/CH01109]
[59]
Klinkesorn, U.; Sophanodora, P.; Chinachoti, P.; McClements, D.J.; Decker, E.A. Stability of spray-dried tuna oil emulsions encapsulated with two-layered interfacial membranes. J. Agric. Food Chem., 2005, 53(21), 8365-8371.
[http://dx.doi.org/10.1021/jf050761r] [PMID: 16218689]
[60]
Klinkesorn, U.; Sophanodora, P.; Chinachoti, P.; McClements, D.J.; Decker, E.A. Increasing the oxidative stability of liquid and dried tuna oil-in-water emulsions with electrostatic layer-by-layer deposition technology. J. Agric. Food Chem., 2005, 53(11), 4561-4566.
[http://dx.doi.org/10.1021/jf0479158] [PMID: 15913325]
[61]
McClements, D. Food Emulsions, 2004.
[http://dx.doi.org/10.1201/9781420039436]
[62]
Djordjevic, D.; Cercaci, L.; Alamed, J.; McClements, D.J.; Decker, E.A. Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions. J. Agric. Food Chem., 2007, 55(9), 3585-3591.
[http://dx.doi.org/10.1021/jf063472r] [PMID: 17419641]
[63]
Yang, X.; Tian, H.; Ho, C-T.; Huang, Q. Stability of citral in emulsions coated with cationic biopolymer layers. J. Agric. Food Chem., 2012, 60(1), 402-409.
[http://dx.doi.org/10.1021/jf203847b] [PMID: 22148257]
[64]
Yang, X.; Tian, H.; Ho, C-T.; Huang, Q. Inhibition of citral degradation by oil-in-water nanoemulsions combined with antioxidants. J. Agric. Food Chem., 2011, 59(11), 6113-6119.
[http://dx.doi.org/10.1021/jf2012375] [PMID: 21517071]
[65]
Zhao, Q.; Ho, C-T.; Huang, Q. Effect of ubiquinol-10 on citral stability and off-flavor formation in oil-in-water (O/W) nanoemulsions. J. Agric. Food Chem., 2013, 61(31), 7462-7469.
[http://dx.doi.org/10.1021/jf4017527] [PMID: 23855652]
[66]
Tian, H.; Li, D.; Xu, T.; Hu, J.; Rong, Y.; Zhao, B. Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and Tween 20 in an acidic system. J. Sci. Food Agric., 2017, 97(9), 2991-2998.
[http://dx.doi.org/10.1002/jsfa.8139] [PMID: 27859362]
[67]
Diliberto, J.J.; Usha, G.; Birnbaum, L.S. Disposition of citral in male Fischer rats. Drug Metab. Dispos., 1988, 16(5), 721-727.
[PMID: 2906597]
[68]
Moleyar, V.; Narasimham, P. Detoxification of essential oil components (Citral and Menthol) by Aspergillus Niger and Rhizopus Stolonifer. J. Sci. Food Agric., 1987, 39(3), 239-246.
[http://dx.doi.org/10.1002/jsfa.2740390307]
[69]
Phillips, J.C.; Kingsnorth, J.; Gangolli, S.D.; Gaunt, I.F. Studies on the absorption, distribution and excretion of Citral in the rat and mouse. Food Cosmet. Toxicol., 1976, 14(6), 537-540.
[http://dx.doi.org/10.1016/S0015-6264(76)80003-X] [PMID: 1017768]
[70]
Parke, D.V.; Rahman, H. The effects of some terpenoids and other dietary anutrients on hepatic drug-metabolizing enzymes.Biochem. J. , 1969; 113, p. (2)12p.
[http://dx.doi.org/10.1042/bj1130012Pa]
[71]
Boyer, C.S.; Petersen, D.R. The metabolism of 3,7-dimethyl-2,6-octadienal (citral) in rat hepatic mitochondrial and cytosolic fractions. Interactions with aldehyde and alcohol dehydrogenases. Drug Metab. Dispos., 1991, 19(1), 81-86.
[PMID: 1673427]
[72]
Onawunmi, G.O. Evaluation of the antimicrobial activity of Citral. Lett. Appl. Microbiol., 1989, 9(3), 105-108.
[http://dx.doi.org/10.1111/j.1472-765X.1989.tb00301.x]
[73]
Leite, M.C.A.; Bezerra, A.P. de B.; de Sousa, J.P.; Guerra, F.Q.S. Lima Ede, O. Evaluation of antifungal activity and mechanism of action of Citral against Candida albicans. Evid. Based Complement. Alternat. Med., 2014, 2014378280
[http://dx.doi.org/10.1155/2014/378280] [PMID: 25250053]
[74]
Belda-Galbis, C.; Martínez, A.; Rodrigo, D. Antimicrobial effect of carvacrol on escherichia coli k12 growth at different temperatures; Sci. Technol. Against Microbial Pathogens, 2011, pp. 80-84.
[http://dx.doi.org/10.1142/9789814354868_0015]
[75]
Mokarizadeh, M.; Kafil, H.S.; Ghanbarzadeh, S.; Alizadeh, A.; Hamishehkar, H. Improvement of Citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative. Res. Pharm. Sci., 2017, 12(5), 409-415.
[http://dx.doi.org/10.4103/1735-5362.213986] [PMID: 28974979]
[76]
Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M-A.; Elfeki, A.; Talarmin, H. Biological properties of Citral and its potential protective effects against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother., 2017, 87, 653-660.
[http://dx.doi.org/10.1016/j.biopha.2016.12.104] [PMID: 28088731]
[77]
Tang, H.; Long, N.; Dai, M.; Lin, L.; Li, J.; Sun, F.; Guo, L. Effect of citral on mouse hepatic cytochrome P450 enzymes. Pharm. Biol., 2018, 56(1), 337-343.
[http://dx.doi.org/10.1080/13880209.2018.1470191] [PMID: 29969356]
[78]
Suaeyun, R. Inhibitory effects of lemon grass (Cymbopogon Citratus Stapf) on Formation of azoxymethane-induced DNA adducts and aberrant crypt foci in the rat colon. 1997, 18(5), 949-955.http://dx.doi.org///doi.org/10.1093/carcin/18.5.949
[79]
Bidinotto, L.T.; Costa, C.A.R.A.; Salvadori, D.M.F.; Costa, M.; Rodrigues, M.A.M.; Barbisan, L.F. Protective effects of lemongrass (Cymbopogon citratus STAPF) essential oil on DNA damage and carcinogenesis in female Balb/C mice. J. Appl. Toxicol., 2011, 31(6), 536-544.
[http://dx.doi.org/10.1002/jat.1593] [PMID: 21089157]
[80]
Chaouki, W.; Leger, D.Y.; Liagre, B.; Beneytout, J-L.; Hmamouchi, M. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells. Fundam. Clin. Pharmacol., 2009, 23(5), 549-556.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00738.x]
[81]
Ghosh, K. Anticancer effect of lemongrass oil and citral on cervical cancer cell lines. Pharmacogn. Commun., 2013, 3(4), 41.
[82]
Dudai, N.; Weinstein, Y.; Krup, M.; Rabinski, T.; Ofir, R. Citral is a new inducer of caspase-3 in tumor cell lines. Planta Med., 2005, 71(5), 484-488.
[http://dx.doi.org/10.1055/s-2005-864146] [PMID: 15931590]
[83]
Di Mola, A.; Massa, A.; De Feo, V.; Basile, A.; Pascale, M.; Aquino, R.P.; De Caprariis, P. Effect of Citral and Citral related compounds on viability of pancreatic and human B-lymphoma cell lines. Med. Chem. Res., 2017, 26(3), 631-639.
[http://dx.doi.org/10.1007/s00044-017-1779-z]
[84]
Xia, H.; Liang, W.; Song, Q.; Chen, X.; Chen, X.; Hong, J. The in vitro study of apoptosis in NB4 cell induced by citral. Cytotechnology, 2013, 65(1), 49-57.
[http://dx.doi.org/10.1007/s10616-012-9453-2] [PMID: 22573288]
[85]
Kapur, A.; Felder, M.; Fass, L.; Kaur, J.; Czarnecki, A.; Rathi, K.; Zeng, S.; Osowski, K.K.; Howell, C.; Xiong, M.P. AP15: modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows Citral to decrease cancer cell proliferation. Sci. Rep., 2016, 6, 27530.
[http://dx.doi.org///doi.org/10.1158/1557-3265.ovcasymp16-ap15]
[86]
Nigjeh, S.E.; Yeap, S.K.; Nordin, N.; Kamalideghan, B.; Ky, H.; Rosli, R. Citral induced apoptosis in MDA-MB-231 spheroid cells. BMC Complement. Altern. Med., 2018, 18(1), 56.
[http://dx.doi.org/10.1186/s12906-018-2115-y] [PMID: 29433490]
[87]
Zielińska, A.; Martins-Gomes, C.; Ferreira, N.R.; Silva, A.M.; Nowak, I.; Souto, E.B. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int. J. Pharm., 2018, 553(1-2), 428-440.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.065] [PMID: 30385373]
[88]
De Martino, L.; D’Arena, G.; Minervini, M.M.; Deaglio, S.; Fusco, B.M.; Cascavilla, N.; De Feo, V. Verbena officinalis essential oil and its component citral as apoptotic-inducing agent in chronic lymphocytic leukemia. Int. J. Immunopathol. Pharmacol., 2009, 22(4), 1097-1104.
[http://dx.doi.org/10.1177/039463200902200426] [PMID: 20074474]
[89]
Patel, P.B.; Thakkar, V.R.; Patel, J.S. Cellular effect of curcumin and citral combination on breast cancer cells: induction of apoptosis and cell cycle arrest. J. Breast Cancer, 2015, 18(3), 225-234.
[http://dx.doi.org/10.4048/jbc.2015.18.3.225] [PMID: 26472972]
[90]
Farah, I.O.; Trimble, Q.; Ndebele, K.; Mawson, A. Retinoids and citral modulated cell viability, metabolic stability, cell cycle progression and distribution in the a549 lung carcinoma cell line - biomed 2010. Biomed. Sci. Instrum., 2010, 46, 410-421.
[PMID: 20467116]
[91]
Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J. Med., 2014, 9(1), 25431.
[http://dx.doi.org/10.3402/ljm.v9.25431] [PMID: 28156278]
[92]
Ocheng, F.; Bwanga, F.; Almer Boström, E.; Joloba, M.; Borg-Karlson, A-K.; Yucel-Lindberg, T.; Obua, C.; Gustafsson, A. Essential oils from ugandan medicinal plants: in vitro cytotoxicity and effects on IL-1 β-Induced proinflammatory mediators by human gingival fibroblasts. Evid. Based Complement. Alternat. Med., 2016, 20165357689
[http://dx.doi.org/10.1155/2016/5357689] [PMID: 27807462]
[93]
Adukwu, E.C.; Bowles, M.; Edwards-Jones, V.; Bone, H. Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl. Microbiol. Biotechnol., 2016, 100(22), 9619-9627.
[http://dx.doi.org/10.1007/s00253-016-7807-y] [PMID: 27562470]
[94]
Katsukawa, M.; Nakata, R.; Takizawa, Y.; Hori, K.; Takahashi, S.; Inoue, H. Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim. Biophys. Acta, 2010, 1801(11), 1214-1220.
[http://dx.doi.org/10.1016/j.bbalip.2010.07.004] [PMID: 20656057]
[95]
Song, Y.; Zhao, H.; Liu, J.; Fang, C.; Miao, R. Effects of citral on lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells. Inflammation, 2016, 39(2), 663-671.
[http://dx.doi.org/10.1007/s10753-015-0292-0] [PMID: 26658749]
[96]
Emílio-Silva, M.T.; Mota, C.M.D.; Hiruma-Lima, C.A.; Antunes-Rodrigues, J.; Cárnio, E.C.; Branco, L.G.S. antipyretic effects of citral and possible mechanisms of action. Inflammation, 2017, 40(5), 1735-1741.
[http://dx.doi.org/10.1007/s10753-017-0615-4] [PMID: 28667503]
[97]
Sri Devi, S.; Ashokkumar, N. Citral, a Monoterpene inhibits adipogenesis through modulation of adipogenic transcription factors in 3T3-L1 Cells. Indian J. Clin. Biochem., 2018, 33(4), 414-421.
[http://dx.doi.org/10.1007/s12291-017-0692-z] [PMID: 30319187]
[98]
Nordin, N.; Yeap, S.K.; Zamberi, N.R.; Abu, N.; Mohamad, N.E.; Rahman, H.S.; How, C.W.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. Characterization and toxicity of Citral incorporated with nanostructured lipid carrier. PeerJ, 2018, 6e3916
[http://dx.doi.org///doi.org/10.7717/peerj.3916]
[99]
Campos, J.; Schmeda-Hirschmann, G.; Leiva, E.; Guzmán, L.; Orrego, R.; Fernández, P.; González, M.; Radojkovic, C.; Zuñiga, F.A.; Lamperti, L.; Pastene, E.; Aguayo, C. Lemon grass (Cymbopogon citratus (D.C) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidised low-density lipoprotein. Food Chem., 2014, 151, 175-181.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.018] [PMID: 24423518]
[100]
Subramaniyan, S.D. Citral, A monoterpene protect against high glucose induced oxidative injury in HepG2 cell in vitro-an experimental study. JCDR, 2017, 11, BC10-BC15.
[http://dx.doi.org///doi.org/10.7860/jcdr/2017/28470.10377]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy