Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Ameliorative Role of Green Tea and Zinc Oxide Nanoparticles Complex Against Monosodium Glutamate-Induced Testicular Toxicity in Male Rats

Author(s): Reham Z. Hamza, Fawziah A. Al-Salmi, Hebatullah Laban and Nahla S. El-Shenawy*

Volume 21, Issue 6, 2020

Page: [488 - 501] Pages: 14

DOI: 10.2174/1389201020666191203095036

Price: $65

conference banner
Abstract

Background and Objective: This study was designed to estimate the long-term effects of zinc oxide nanoparticles/green tea (ZnONPs/GTE) complex against monosodium glutamate (MSG). The antioxidant/oxidative status, testosterone levels, DNA damage, and histopathological changes of testis were evaluated.

Methods: The rats were divided into eight groups that were treated as follows: saline, the lower dosage of MSG (6.0 mg/kg), the higher dosage of MSG (17.5 mg/Kg), GTE, ZnONPs, ZnONPs/GTE and the last two groups were treated with the lower dosage of MSG or the higher dosage of MSG with ZnONPs/GTE complex. The data showed minimal toxicity in testicular tissue after the administration of ZnONPs.

Results: The MSG treatment in the adult male rats reduced testosterone levels and disrupted testicular histology, which revealed dose-dependence of MSG. Also, ZnONPs induced testicular dysfunction through the interference of antioxidant/oxidant balance and suppression of testosterone levels as well as induction of cellular damage of testis. The combination of ZnONPs with GTE complex significantly protects against MSG or ZnONPs toxicity by decreasing the DNA damage, oxidative stress, and enhancement of antioxidant as well as histological structure of testis.

Conclusion: We could recommend using ZnONPs/GTE complex to reduce the toxicity of ZnONPs and MSG on the testis at the cellular and oxidative stress levels.

Keywords: Green synthesis, ZnONPs/green tea extract, monosodium glutamate, testis, comet assay, toxicity.

Graphical Abstract
[1]
AL-Harbi.M.S. Effect of monosodium glutamate on oxidative damage in the male mice: Modulatory role of vitamin C. Adv. Food Sci., 2014, 36(4), 167-176.
[2]
Gao, J.; Wu, J.; Zhao, X.N.; Zhang, Z.X. Transplacental neurotoxic effects of monosodium glutamate on structures and functions of specific brain areas of filial mice. Acta physiologica Sinica, 1994, 46(1), 44-51.
[3]
Geha, R.S.; Beiser, A.; Ren, C.; Patterson, R.; Greenberger, P.A.; Grammer, L.C.; Ditto, A.M.; Harris, K.E.; Shaughnessy, M.A.; Yarnold, P.R.; Corren, J.; Saxon, A. Review of alleged reaction to monosodium glutamate and outcome of a multicenter double-blind placebo-controlled study. J. Nutr., 2000, 130(4S Suppl), 1058S-1062S.
[http://dx.doi.org/10.1093/jn/130.4.1058S] [PMID: 10736382]
[4]
Kazmi, Z.; Fatima, I.; Perveen, S.; Malik, S.S. Monosodium glutamate: Review on clinical reports. Int. J. Food Prop., 2017, 20, 1807-1815.
[http://dx.doi.org/10.1080/10942912.2017.1295260]
[5]
Ehlers, I.; Niggemann, B.; Binder, C.; Zuberbier, T. Role of nonallergic hypersensitivity reactions in children with chronic urticaria. Allergy, 1998, 53(11), 1074-1077.
[http://dx.doi.org/10.1111/j.1398-9995.1998.tb03817.x] [PMID: 9860240]
[6]
Lin, L.; Gu, H.M.; Zhang, W.N.; Zhao, X.N.; Zhang, H.Y.; Tang, G.Z.; Li, M.Y.; Zhang, Z.X. [Effects of morphine on monosodium glutamate neurotoxicity and its mechanism]. Yao Xue Xue Bao, 1995, 30(11), 806-811.
[PMID: 8712007]
[7]
Das, R.S.; Ghosh, S.K. Long term effects of monosodium glutamate on spermatogenesis following neonatal exposure in albino mice--a histological study. Nepal Medical College. J. NMCJ, 2010, 12(3), 149-153.
[8]
Igwebuike, U.M. The effects of oral administration of Monosodium Glutamate (MSG) on the testicular morphology and cauda epididymal sperm reserves of young and adult male rats. Vet. Arh., 2011, 81(4), 525-534.
[9]
Nosseir, N.S.; Ali, M.M.; Ebaid, H.M. A histological and morphometric study of monosodium glutamate toxic effect on testicular structure and potentiality of recovery in adult albino rat. Res J Biol., 2012, 2(2), 66-78.
[10]
Gong, S.L.; Xia, F.Q.; Wei, J.; Li, X.Y.; Sun, T.H.; Lu, Z.; Liu, S.Z. Harmful effects of MSG on function of hypothalamus-pituitary-target gland system. Biomed. Environ. Sci., 1995, 8(4), 310-317.
[PMID: 8719172]
[11]
Namvar, F.; Rahman, H.S.; Mohamad, R.; Azizi, S.; Tahir, P.M.; Chartrand, M.S.; Yeap, S.K. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. Evid. Based Complement. Alternat. Med., 2015, 2015593014
[http://dx.doi.org/10.1155/2015/593014] [PMID: 25784947]
[12]
Han, L.; Zhang, Y.; Lu, X.; Wang, K.; Wang, Z.; Zhang, H. Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness. ACS Appl. Mater. Interfaces, 2016, 8(42), 29088-29100.
[http://dx.doi.org/10.1021/acsami.6b11043] [PMID: 27709887]
[13]
Li, C.H.; Shen, C.C.; Cheng, Y.W.; Huang, S.H.; Wu, C.C.; Kao, C.C.; Liao, J.W.; Kang, J.J. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology, 2012, 6(7), 746-756.
[http://dx.doi.org/10.3109/17435390.2011.620717] [PMID: 21950449]
[14]
Talebi, A.R.; Khorsandi, L.; Moridian, M. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J. Assist. Reprod. Genet., 2013, 30(9), 1203-1209.
[http://dx.doi.org/10.1007/s10815-013-0078-y] [PMID: 23949131]
[15]
Figueiroa, M.S.; César Vieira, J.S.; Leite, D.S.; Filho, R.C.; Ferreira, F.; Gouveia, P.S.; Udrisar, D.P.; Wanderley, M.I. Green tea polyphenols inhibit testosterone production in rat Leydig cells. Asian J. Androl., 2009, 11(3), 362-370.
[http://dx.doi.org/10.1038/aja.2009.2] [PMID: 19330017]
[16]
Elhalwagy, M.E.A.; Darwish, N.S.; Zaher, E.M. Prophylactic effect of green tea polyphenols against liver and kidney injury induced by fenitrothion insecticide. Pestic. Biochem. Physiol., 2008, 91, 81-89.
[http://dx.doi.org/10.1016/j.pestbp.2008.01.006]
[17]
Paul, C.; Teng, S.; Saunders, P.T.K. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol. Reprod., 2009A, 80(5), 913-919.
[http://dx.doi.org/10.1095/biolreprod.108.071779] [PMID: 19144962]
[18]
Donà, M.; Dell’Aica, I.; Calabrese, F.; Benelli, R.; Morini, M.; Albini, A.; Garbisa, S. Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J. Immunol., 2003, 170(8), 4335-4341.
[http://dx.doi.org/10.4049/jimmunol.170.8.4335] [PMID: 12682270]
[19]
Chedrese, P.J. 2009. Reproductive Endocrinology: A Molecular Approach. Springer-Verlag US: Boston, 2009.
[http://dx.doi.org/10.1007/978-0-387-88186-7]
[20]
Hamza, R.Z.; Al-Harbi, M.S. Monosodium glutamate induced testicular toxicity and the possible ameliorative role of vitamin E or selenium in male rats. Toxicol. Rep., 2014, 1(1), 1037-1045.
[http://dx.doi.org/10.1016/j.toxrep.2014.10.002] [PMID: 28962317]
[21]
Al-Salmi, F.A.; Hamza, R.Z.; El-Shenawy, N.S. The interaction of zinc oxide/green tea extract complex nanoparticles and its effect on monosodium glutamate toxicity in liver of rats. Curr. Pharm. Biotechnol., 2019, 20(6), 465-475.
[http://dx.doi.org/10.2174/1389201020666190408120532] [PMID: 30961481]
[22]
Hamza, R.Z.; Al-Salmi, F.A.; El-Shenawy, N.S. Evaluation of the effects of the green nanoparticles zinc oxide on monosodium glutamate-induced toxicity in the brain of rats.PeerJ, 2019, 7e7460.
[http://dx.doi.org/10.7717/peerj.7460] [PMID: 31579564]
[23]
[24]
Trush, M.A.; Egner, P.A.; Kensler, T.W. Myeloperoxidase as a biomarker of skin irritation and inflammation. Food Chem. Toxicol., 1994, 32(2), 143-147.
[http://dx.doi.org/10.1016/0278-6915(94)90175-9] [PMID: 8132173]
[25]
Litwack, G.; Bothwell, J.W.; Williams, J.N., Jr; Elvehjem, C.A. A colorimetric assay for xanthine oxidase in rat liver homogenates. J. Biol. Chem., 1953, 200(1), 303-310.
[PMID: 13034787]
[26]
McCord, JM; Fridovich, I 1969.Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem.,, 25:244(22), 6049-6055.
[27]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[28]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[29]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[30]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-888.
[PMID: 13967893]
[31]
Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol., 1994, 233, 380-385.
[http://dx.doi.org/10.1016/S0076-6879(94)33044-1] [PMID: 8015473]
[32]
Gabe, M. Techniques histologiques (Histological Technics); Masson Publisher: Paris, 1968.
[33]
Johnsen, S.G. Testicular biopsy score count--a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones, 1970, 1(1), 2-25.
[PMID: 5527187]
[34]
Ayub, B.; Wani, H.; Shoukat, S.; Para, P.A.; Ganguly, S.; Ali, M. Specimen preparation for electron microscopy: An overview. J. Environ. Life Sci., 2017, 3, 2(3), 91-94.
[35]
Singh, NP.; McCoy, MT.; Tice, RR.; Schneider, EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191.
[http://dx.doi.org/10.1016/0014-4827(88)90265-0]
[36]
Singh, S.; Nalwa, H.S. Nanotechnology and health safety--toxicity and risk assessments of nanostructured materials on human health. J. Nanosci. Nanotechnol., 2007, 7(9), 3048-3070.
[http://dx.doi.org/10.1166/jnn.2007.922] [PMID: 18019130]
[37]
Connolly, M.; Fernández, M.; Conde, E.; Torrent, F.; Navas, J.M.; Fernández-Cruz, M.L. Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci. Total Environ., 2016, 551-552(551), 334-343.
[http://dx.doi.org/10.1016/j.scitotenv.2016.01.186] [PMID: 26878645]
[38]
Kopalli, S.R.; Hwang, S.Y.; Won, Y.J.; Kim, S.W.; Cha, K.M.; Han, C.K.; Hong, J.Y.; Kim, S.K. Korean red ginseng extract rejuvenates testicular ineffectiveness and sperm maturation process in aged rats by regulating redox proteins and oxidative defense mechanisms. Exp. Gerontol., 2015, 69, 94-102.
[http://dx.doi.org/10.1016/j.exger.2015.05.004] [PMID: 25980653]
[39]
Dalto, D.; Matte, J.J. Pyridoxine (vitamin B6) and the glutathione peroxidase system; a link between one-carbon metabolism and antioxidation. Nutrients, 2017, 9(3), 189.
[http://dx.doi.org/10.3390/nu9030189]
[40]
Yoshida, S.; Hiyoshi, K.; Ichinose, T.; Takano, H.; Oshio, S.; Sugawara, I.; Takeda, K.; Shibamoto, T. Effect of nanoparticles on the male reproductive system of mice. Int. J. Androl., 2009, 32(4), 337-342.
[http://dx.doi.org/10.1111/j.1365-2605.2007.00865.x] [PMID: 18217983]
[41]
Mozaffari, Z.; Parivar, K.; Roodbari, N.H.; Irani, S. Histopathological evaluation of the toxic effects of zinc oxide (ZnO) nanoparticles on testicular tissue of NMRI adult mice. Adv Stud Biol., 2015, 7(6), 275-291.
[http://dx.doi.org/10.12988/asb.2015.5425]
[42]
Ortiz, G.G.; Bitzer-Quintero, O.K.; Zárate, C.B.; Rodríguez-Reynoso, S.; Larios-Arceo, F.; Velázquez-Brizuela, I.E.; Pacheco-Moisés, F.; Rosales-Corral, S.A. Monosodium glutamate-induced damage in liver and kidney: a morphological and biochemical approach. Biomed. Pharmacother., 2006, 60(2), 86-91.
[http://dx.doi.org/10.1016/j.biopha.2005.07.012] [PMID: 16488110]
[43]
Lan, Z.; Yang, W-X. Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier. Nanomedicine (Lond.), 2012, 7(4), 579-596.
[http://dx.doi.org/10.2217/nnm.12.20] [PMID: 22471721]
[44]
Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. 2011.Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med., 2011, 51(10), 1872-1881.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.025]
[45]
Carmona, E.R.; Inostroza-Blancheteau, C.; Rubio, L.; Marcos, R. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol. Ind. Health, 2016, 32(12), 1987-2001.
[http://dx.doi.org/10.1177/0748233715599472] [PMID: 26419260]
[46]
Dubey, P.; Matai, I.; Kumar, S.U.; Sachdey, A.; Bhusan, B.; Gopinath, P. Perturbation of mechanistic cellular system by silver nanoparticle toxicity: Cytotoxic, genotoxic and epigenetic potentials. Adv. Colloid Interface Sci, 2015, 221, 04-21.
[http://dx.doi.org/10.1016/j.cis.2015.02.007]
[47]
Musarrat, J.; Saquib, Q.; Azam, A.; Naqvi, S.A.H. Zinc oxide nanoparticles-induced DNA damage in human lymphocytes. Int. J. Nanopart., 2009, 2, 402-415.
[http://dx.doi.org/10.1504/IJNP.2009.028775]
[48]
Gerloff, K.; Albrecht, C.; Boots, A.W.; Förster, I.; Schins, R.P. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicol., 2009, 3(4), 355-364.
[http://dx.doi.org/10.3109/17435390903276933]
[49]
Simkó, M.; Tischler, S.; Mattsson, M.O. Pooling and analysis of published in vitro data: A proof of concept study for the grouping of nanoparticles. Int. J. Mol. Sci., 2015, 16(11), 26211-26236.
[http://dx.doi.org/10.3390/ijms161125954] [PMID: 26540047]
[50]
Hanipah, E.N.A.; Yahya, N.J. Monosodium glutamate induced oxidative stress in accessory reproductive organs of male Sprague-Dawley rats. Malaysian J. Health Sci., 2018, 16, 67-73.
[http://dx.doi.org/10.17576/jskm-2018-10]
[51]
Pandurangan, M.; Kim, D.H. In vitro toxicity of zinc oxide nanoparticles: A review. J. Nanopart. Res., 2015, 17(3), 158.
[52]
Arab, H.; Mahjoub, S.; Hajian-Tilaki, K.; Moghadasi, M. The effect of green tea consumption on oxidative stress markers and cognitive function in patients with Alzheimer’s disease: A prospective intervention study. Caspian J. Intern. Med., 2016, 7(3), 188-194.
[PMID: 27757204]
[53]
Verstraeten, S.V.; Keen, C.L.; Schmitz, H.H.; Fraga, C.G.; Oteiza, P.I. Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radic. Biol. Med., 2003, 34(1), 84-92.
[http://dx.doi.org/10.1016/S0891-5849(02)01185-1] [PMID: 12498983]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy