Review Article

Plasminogen Receptors in Human Malignancies: Effects on Prognosis and Feasibility as Targets for Drug Development

Author(s): Steven L. Gonias* and Carlotta Zampieri

Volume 21, Issue 7, 2020

Page: [647 - 656] Pages: 10

DOI: 10.2174/1389450120666191122101658

Price: $65

Abstract

The major proteases that constitute the fibrinolysis system are tightly regulated. Protease inhibitors target plasmin, the protease responsible for fibrin degradation, and the proteases that convert plasminogen into plasmin, including tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). A second mechanism by which fibrinolysis is regulated involves exosite interactions, which localize plasminogen and its activators to fibrin, extracellular matrix (ECM) proteins, and cell surfaces. Once plasmin is generated in association with cell surfaces, it may cleave transmembrane proteins, activate growth factors, release growth factors from ECM proteins, remodel ECM, activate metalloproteases, and trigger cell-signaling by cleaving receptors in the Proteaseactivated Receptor (PAR) family. These processes are all implicated in cancer. It is thus not surprising that a family of structurally diverse but functionally similar cell-surface proteins, called Plasminogen Receptors (PlgRs), which increase the catalytic efficiency of plasminogen activation, have received attention for their possible function in cancer and as targets for anticancer drug development. In this review, we consider four previously described PlgRs, including: α-enolase, annexin-A2, Plg-RKT, and cytokeratin-8, in human cancer. To compare the PlgRs, we mined transcriptome profiling data from The Cancer Genome Atlas (TCGA) and searched for correlations between PlgR expression and patient survival. In glioma, the expression of specific PlgRs correlates with tumor grade. In a number of malignancies, including glioblastoma and liver cancer, increased expression of α-enolase or annexin-A2 is associated with an unfavorable prognosis. Whether these correlations reflect the function of PlgRs as receptors for plasminogen or other activities is discussed.

Keywords: Plasminogen, tissue-type plasminogen activator, urokinase-type plasminogen activator, α-enolase, annexin-A2, cytokeratin 8, Plg-RKT, uPAR, LDL receptor-related protein-1, NMDA receptor.

Graphical Abstract
[1]
Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost 2005; 93(4): 647-54.
[http://dx.doi.org/10.1160/TH04-12-0842] [PMID: 15841308]
[2]
Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005; 129(3): 307-21.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05444.x] [PMID: 15842654]
[3]
Schaller J, Gerber SS. The plasmin-antiplasmin system: structural and functional aspects. Cell Mol Life Sci 2011; 68(5): 785-801.
[http://dx.doi.org/10.1007/s00018-010-0566-5] [PMID: 21136135]
[4]
Brockway WJ, Castellino FJ. Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch Biochem Biophys 1972; 151(1): 194-9.
[http://dx.doi.org/10.1016/0003-9861(72)90488-2] [PMID: 5044515]
[5]
Miles LA, Dahlberg CM, Plow EF. The cell-binding domains of plasminogen and their function in plasma. J Biol Chem 1988; 263(24): 11928-34.
[PMID: 3403557]
[6]
Castellino FJ, McCance SG. The kringle domains of human plasminogen. Ciba Found Symp 1997; 212: 46-60.
[http://dx.doi.org/10.1002/9780470515457.ch4] [PMID: 9524763]
[7]
Plow EF, Herren T, Redlitz A, Miles LA, Hoover-Plow JL. The cell biology of the plasminogen system. FASEB J 1995; 9(10): 939-45.
[http://dx.doi.org/10.1096/fasebj.9.10.7615163] [PMID: 7615163]
[8]
Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 1982; 257(6): 2912-9.
[PMID: 7199524]
[9]
Miles LA, Hawley SB, Baik N, Andronicos NM, Castellino FJ, Parmer RJ. Plasminogen receptors: the sine qua non of cell surface plasminogen activation. Front Biosci 2005; 10: 1754-62.
[PMID: 15769664]
[10]
Hajjar KA, Harpel PC, Jaffe EA, Nachman RL. Binding of plasminogen to cultured human endothelial cells. J Biol Chem 1986; 261(25): 11656-62.
[PMID: 3745161]
[11]
Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 1991; 30(6): 1682-91.
[http://dx.doi.org/10.1021/bi00220a034] [PMID: 1847072]
[12]
Hall SW, Humphries JE, Gonias SL. Inhibition of cell surface receptor-bound plasmin by alpha 2-antiplasmin and alpha 2-macroglobulin. J Biol Chem 1991; 266(19): 12329-36.
[PMID: 1712017]
[13]
Hajjar KA, Jacovina AT, Chacko J. An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem 1994; 269(33): 21191-7.
[PMID: 8063740]
[14]
Miller VA, Madureira PA, Kamaludin AA, et al. Mechanism of plasmin generation by S100A10. Thromb Haemost 2017; 117(6): 1058-71.
[http://dx.doi.org/10.1160/TH16-12-0936] [PMID: 28382372]
[15]
Das R, Burke T, Plow EF. Histone H2B as a functionally important plasminogen receptor on macrophages. Blood 2007; 110(10): 3763-72.
[http://dx.doi.org/10.1182/blood-2007-03-079392] [PMID: 17690254]
[16]
Hembrough TA, Vasudevan J, Allietta MM, Glass WF II, Gonias SL. A cytokeratin 8-like protein with plasminogen-binding activity is present on the external surfaces of hepatocytes, HepG2 cells and breast carcinoma cell lines. J Cell Sci 1995; 108(Pt 3): 1071-82.
[PMID: 7542667]
[17]
Dudani AK, Ganz PR. Endothelial cell surface actin serves as a binding site for plasminogen, tissue plasminogen activator and lipoprotein(a). Br J Haematol 1996; 95(1): 168-78.
[http://dx.doi.org/10.1046/j.1365-2141.1996.7482367.x] [PMID: 8857956]
[18]
Andronicos NM, Chen EI, Baik N, et al. Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation. Blood 2010; 115(7): 1319-30.
[http://dx.doi.org/10.1182/blood-2008-11-188938] [PMID: 19897580]
[19]
Felez J, Chanquia CJ, Fabregas P, Plow EF, Miles LA. Competition between plasminogen and tissue plasminogen activator for cellular binding sites. Blood 1993; 82(8): 2433-41.
[http://dx.doi.org/10.1182/blood.V82.8.2433.2433] [PMID: 8400293]
[20]
Kralovich KR, Li L, Hembrough TA, Webb DJ, Karns LR, Gonias SL. Characterization of the binding sites for plasminogen and tissue-type plasminogen activator in cytokeratin 8 and cytokeratin 18. J Protein Chem 1998; 17(8): 845-54.
[http://dx.doi.org/10.1023/A:1020738620817] [PMID: 9988531]
[21]
Ling Q, Jacovina AT, Deora A, et al. Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest 2004; 113(1): 38-48.
[http://dx.doi.org/10.1172/JCI19684] [PMID: 14702107]
[22]
Cesarman-Maus G, Ríos-Luna NP, Deora AB, et al. Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome. Blood 2006; 107(11): 4375-82.
[http://dx.doi.org/10.1182/blood-2005-07-2636] [PMID: 16493010]
[23]
Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med 1999; 340(13): 994-1004.
[http://dx.doi.org/10.1056/NEJM199904013401303] [PMID: 10099141]
[24]
Wygrecka M, Marsh LM, Morty RE, et al. Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood 2009; 113(22): 5588-98.
[http://dx.doi.org/10.1182/blood-2008-08-170837] [PMID: 19182206]
[25]
Miles LA, Baik N, Lighvani S, et al. Deficiency of plasminogen receptor, Plg-RKT, causes defects in plasminogen binding and inflammatory macrophage recruitment in vivo. J Thromb Haemost 2017; 15(1): 155-62.
[http://dx.doi.org/10.1111/jth.13532] [PMID: 27714956]
[26]
Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 2004; 9: 283-9.
[http://dx.doi.org/10.2741/1184] [PMID: 14766366]
[27]
Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015; 29(1): 17-24.
[http://dx.doi.org/10.1016/j.blre.2014.09.003] [PMID: 25294122]
[28]
Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3(12): 932-43.
[http://dx.doi.org/10.1038/nrm977] [PMID: 12461559]
[29]
Resnati M, Pallavicini I, Wang JM, et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci USA 2002; 99(3): 1359-64.
[http://dx.doi.org/10.1073/pnas.022652999] [PMID: 11818541]
[30]
Wei Y, Lukashev M, Simon DI, et al. Regulation of integrin function by the urokinase receptor. Science 1996; 273(5281): 1551-5.
[http://dx.doi.org/10.1126/science.273.5281.1551] [PMID: 8703217]
[31]
Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 2002; 1(5): 445-57.
[http://dx.doi.org/10.1016/S1535-6108(02)00072-7] [PMID: 12124174]
[32]
Nguyen DH, Catling AD, Webb DJ, et al. Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J Cell Biol 1999; 146(1): 149-64.
[http://dx.doi.org/10.1083/jcb.146.1.149] [PMID: 10402467]
[33]
Jo M, Takimoto S, Montel V, Gonias SL. The urokinase receptor promotes cancer metastasis independently of urokinase-type plasminogen activator in mice. Am J Pathol 2009; 175(1): 190-200.
[http://dx.doi.org/10.2353/ajpath.2009.081053] [PMID: 19497996]
[34]
Fernández-Monreal M, López-Atalaya JP, Benchenane K, et al. Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J Biol Chem 2004; 279(49): 50850-6.
[http://dx.doi.org/10.1074/jbc.M407069200] [PMID: 15448144]
[35]
Mantuano E, Lam MS, Gonias SL. LRP1 assembles unique co-receptor systems to initiate cell signaling in response to tissue-type plasminogen activator and myelin-associated glycoprotein. J Biol Chem 2013; 288(47): 34009-18.
[http://dx.doi.org/10.1074/jbc.M113.509133] [PMID: 24129569]
[36]
Mantuano E, Azmoon P, Brifault C, et al. Tissue-type plasminogen activator regulates macrophage activation and innate immunity. Blood 2017; 130(11): 1364-74.
[http://dx.doi.org/10.1182/blood-2017-04-780205] [PMID: 28684538]
[37]
Mantuano E, Lam MS, Shibayama M, Campana WM, Gonias SL. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration. J Cell Sci 2015; 128(18): 3478-88.
[http://dx.doi.org/10.1242/jcs.173765] [PMID: 26272917]
[38]
Saksela O, Rifkin DB. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol 1988; 4: 93-126.
[http://dx.doi.org/10.1146/annurev.cb.04.110188.000521] [PMID: 3143380]
[39]
Kleiner DE Jr, Stetler-Stevenson WG. Structural biochemistry and activation of matrix metalloproteases. Curr Opin Cell Biol 1993; 5(5): 891-7.
[http://dx.doi.org/10.1016/0955-0674(93)90040-W] [PMID: 8240832]
[40]
Deryugina EI, Quigley JP. Cell surface remodeling by plasmin: a new function for an old enzyme. J Biomed Biotechnol 2012; 2012564259
[http://dx.doi.org/10.1155/2012/564259] [PMID: 23097597]
[41]
Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407(6801): 258-64.
[http://dx.doi.org/10.1038/35025229] [PMID: 11001069]
[42]
Kuliopulos A, Covic L, Seeley SK, Sheridan PJ, Helin J, Costello CE. Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 1999; 38(14): 4572-85.
[http://dx.doi.org/10.1021/bi9824792] [PMID: 10194379]
[43]
Junge CE, Sugawara T, Mannaioni G, et al. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia. Proc Natl Acad Sci USA 2003; 100(22): 13019-24.
[http://dx.doi.org/10.1073/pnas.2235594100] [PMID: 14559973]
[44]
Pendurthi UR, Ngyuen M, Andrade-Gordon P, Petersen LC, Rao LV. Plasmin induces Cyr61 gene expression in fibroblasts via protease-activated receptor-1 and p44/42 mitogen-activated protein kinase-dependent signaling pathway. Arterioscler Thromb Vasc Biol 2002; 22(9): 1421-6.
[http://dx.doi.org/10.1161/01.ATV.0000030200.59331.3F] [PMID: 12231560]
[45]
Quinton TM, Kim S, Derian CK, Jin J, Kunapuli SP. Plasmin-mediated activation of platelets occurs by cleavage of protease-activated receptor 4. J Biol Chem 2004; 279(18): 18434-9.
[http://dx.doi.org/10.1074/jbc.M401431200] [PMID: 14973136]
[46]
Majumdar M, Tarui T, Shi B, Akakura N, Ruf W, Takada Y. Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin alpha(9)beta(1). J Biol Chem 2004; 279(36): 37528-34.
[http://dx.doi.org/10.1074/jbc.M401372200] [PMID: 15247268]
[47]
Carmo AA, Costa BR, Vago JP, et al. Plasmin induces in vivo monocyte recruitment through protease-activated receptor-1-, MEK/ERK-, and CCR2-mediated signaling. J Immunol 2014; 193(7): 3654-63.
[http://dx.doi.org/10.4049/jimmunol.1400334] [PMID: 25165151]
[48]
Gonias SL, Hembrough TA, Sankovic M. Cytokeratin 8 functions as a major plasminogen receptor in select epithelial and carcinoma cells. Front Biosci 2001; 6: D1403-11.
[http://dx.doi.org/10.2741/A689] [PMID: 11689350]
[49]
Díaz VM, Hurtado M, Thomson TM, Reventós J, Paciucci R. Specific interaction of tissue-type plasminogen activator (t-PA) with annexin II on the membrane of pancreatic cancer cells activates plasminogen and promotes invasion in vitro. Gut 2004; 53(7): 993-1000.
[http://dx.doi.org/10.1136/gut.2003.026831] [PMID: 15194650]
[50]
Chang GC, Liu KJ, Hsieh CL, et al. Identification of alpha-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clin Cancer Res 2006; 12(19): 5746-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0324] [PMID: 17020980]
[51]
Principe M, Ceruti P, Shih NY, et al. Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells. Oncotarget 2015; 6(13): 11098-113.
[http://dx.doi.org/10.18632/oncotarget.3572] [PMID: 25860938]
[52]
Kumari S, Malla R. New insight on the role of plasminogen receptor in cancer progression. Cancer Growth Metastasis 2015; 8: 35-42.
[http://dx.doi.org/10.4137/CGM.S27335] [PMID: 26279629]
[53]
Ceruti P, Principe M, Capello M, Cappello P, Novelli F. Three are better than one: plasminogen receptors as cancer theranostic targets. Exp Hematol Oncol 2013; 2(1): 12.
[http://dx.doi.org/10.1186/2162-3619-2-12] [PMID: 23594883]
[54]
Schaffner F, Ruf W. Tissue factor and protease-activated receptor signaling in cancer. Semin Thromb Hemost 2008; 34(2): 147-53.
[http://dx.doi.org/10.1055/s-2008-1079254] [PMID: 18645919]
[55]
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Protease-activated receptors (PARs)--biology and role in cancer invasion and metastasis. Cancer Metastasis Rev 2015; 34(4): 775-96.
[http://dx.doi.org/10.1007/s10555-015-9599-4] [PMID: 26573921]
[56]
Bugge TH, Kombrinck KW, Xiao Q, et al. Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood 1997; 90(11): 4522-31.
[http://dx.doi.org/10.1182/blood.V90.11.4522] [PMID: 9373263]
[57]
Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 2015; 19(1A): A68-77.
[http://dx.doi.org/10.5114/wo.2014.47136] [PMID: 25691825]
[58]
Phipps KD, Surette AP, O’Connell PA, Waisman DM. Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites. Cancer Res 2011; 71(21): 6676-83.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1748] [PMID: 22042827]
[59]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-7.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[60]
Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 2004; 84(6): 1014-20.
[http://dx.doi.org/10.1016/j.ygeno.2004.08.010] [PMID: 15533718]
[61]
Song Y, Luo Q, Long H, et al. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma. Mol Cancer 2014; 13: 65.
[http://dx.doi.org/10.1186/1476-4598-13-65] [PMID: 24650096]
[62]
Gilder AS, Natali L, Van Dyk DM, et al. The Urokinase Receptor Induces a Mesenchymal Gene Expression Signature in Glioblastoma Cells and Promotes Tumor Cell Survival in Neurospheres. Sci Rep 2018; 8(1): 2982.
[http://dx.doi.org/10.1038/s41598-018-21358-1] [PMID: 29445239]
[63]
Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science 2017; 357(6352)eaan2507
[http://dx.doi.org/10.1126/science.aan2507] [PMID: 28818916]
[64]
Perconti G, Maranto C, Romancino DP, et al. Pro-invasive stimuli and the interacting protein Hsp70 favour the route of alpha-enolase to the cell surface. Sci Rep 2017; 7(1): 3841.
[http://dx.doi.org/10.1038/s41598-017-04185-8] [PMID: 28630480]
[65]
Hembrough TA, Li L, Gonias SL. Cell-surface cytokeratin 8 is the major plasminogen receptor on breast cancer cells and is required for the accelerated activation of cell-associated plasminogen by tissue-type plasminogen activator. J Biol Chem 1996; 271(41): 25684-91.
[http://dx.doi.org/10.1074/jbc.271.41.25684] [PMID: 8810346]
[66]
Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, et al. Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 2005; 11(22): 8006-14.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0632] [PMID: 16299229]
[67]
Florentino-Pineda I, Thompson GH, Poe-Kochert C, Huang RP, Haber LL, Blakemore LC. The effect of amicar on perioperative blood loss in idiopathic scoliosis: the results of a prospective, randomized double-blind study. Spine 2004; 29(3): 233-8.
[http://dx.doi.org/10.1097/01.BRS.0000109883.18015.B9] [PMID: 14752343]
[68]
Gill JB, Chin Y, Levin A, Feng D. The use of antifibrinolytic agents in spine surgery. A meta-analysis. J Bone Joint Surg Am 2008; 90(11): 2399-407.
[http://dx.doi.org/10.2106/JBJS.G.01179] [PMID: 18978408]
[69]
Freeman E W, Lukes A, VanDrie D, Mabey R G, Gersten J, Adomako T L. 2011. A dose-response study of a novel, oral tranexamic formulation for heavy menstrual bleeding Am J Obstet Gynecol 205(4): 319 e311.
[http://dx.doi.org/10.1016/j.ajog.2011.05.015]
[70]
Dunbar SD, Ornstein DL, Zacharski LR. Cancer treatment with inhibitors of urokinase-type plasminogen activator and plasmin. Expert Opin Investig Drugs 2000; 9(9): 2085-92.
[http://dx.doi.org/10.1517/13543784.9.9.2085] [PMID: 11060794]
[71]
Kikuchi Y, Kizawa I, Oomori K, et al. Establishment of a human ovarian cancer cell line capable of forming ascites in nude mice and effects of tranexamic acid on cell proliferation and ascites formation. Cancer Res 1987; 47(2): 592-6.
[PMID: 3791243]
[72]
Soma H, Sashida T, Yoshida M, Miyashita T, Nakamura A. Treatment of advanced ovarian cancer with fibrinolytic inhibitor (tranexamic acid). Acta Obstet Gynecol Scand 1980; 59(3): 285-7.
[http://dx.doi.org/10.3109/00016348009155415] [PMID: 7424507]
[73]
Kikuchi Y, Kizawa I, Oomori K, Matsuda M, Kato K. Adjuvant effects of tranexamic acid to chemotherapy in ovarian cancer patients with large amount of ascites. Acta Obstet Gynecol Scand 1986; 65(5): 453-6.
[http://dx.doi.org/10.3109/00016348609157383] [PMID: 3776488]
[74]
Kikuchi Y, Kizawa I, Oomori K, Kuki E, Kato K. The inhibitory effect of tranexamic acid on human ovarian carcinoma cell grown in vitro and in vivo. Gynecol Oncol 1986; 24(2): 183-8.
[http://dx.doi.org/10.1016/0090-8258(86)90026-0] [PMID: 3710265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy