Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Rosmarinic Acid as a Potent Influenza Neuraminidase Inhibitor: In Vitro and In Silico Study

Author(s): Panupong Mahalapbutr, Mattanun Sangkhawasi, Jirayu Kammarabutr, Supakarn Chamni* and Thanyada Rungrotmongkol*

Volume 20, Issue 23, 2020

Page: [2046 - 2055] Pages: 10

DOI: 10.2174/1568026619666191118110155

Price: $65

conference banner
Abstract

Background: Neuraminidase (NA), a major glycoprotein found on the surface of the influenza virus, is an important target for the prophylaxis and treatment of influenza virus infections. Recently, several plant-derived polyphenols, especially caffeic acid analogs, have been reported to exert the inhibitory activity against NA.

Objective: Herein, we aimed to investigate the anti-influenza NA activity of caffeic acid and its hydroxycinnamate analogues, rosmarinic acid and salvianolic acid A, in comparison to a known NA inhibitor, oseltamivir.

Methods: In vitro MUNANA-based NA inhibitory assay was used to evaluate the inhibitory activity of the three interested hydroxycinnamic compounds towards the influenza NA enzyme. Subsequently, allatom molecular dynamics (MD) simulations and binding free energy calculations were employed to elucidate the structural insights into the protein-ligand complexations.

Results: Rosmarinic acid showed the highest inhibitory activity against NA with the IC50 of 0.40 μM compared to caffeic acid (IC50 of 0.81 μM) and salvianolic acid A (IC50 of >1 μM). From 100-ns MD simulations, the binding affinity, hot-spot residues, and H-bond formations of rosmarinic acid/NA complex were higher than those of caffeic acid/NA model, in which their molecular complexations was driven mainly by electrostatic attractions and H-bond formations from several charged residues (R118, E119, D151, R152, E227, E277, and R371). Notably, the two hydroxyl groups on both phenyl and phenylacetic rings of rosmarinic acid play a crucial role in stabilizing NA through a strongly formed Hbond( s).

Conclusion: Our findings shed light on the potentiality of rosmarinic acid as a lead compound for further development of a potential influenza NA inhibitor.

Keywords: Neuraminidase, Caffeic acid, Rosmarinic acid, Hydroxycinnamate analogues, Molecular docking, Molecular dynamics simulations.

Graphical Abstract
[1]
D’Souza, C.; Kanyalkar, M.; Joshi, M.; Coutinho, E.; Srivastava, S. Search for novel neuraminidase inhibitors: Design, synthesis and interaction of oseltamivir derivatives with model membrane using docking, NMR and DSC methods. Biochim. Biophys. Acta, 2009, 1788(9), 1740-1751.
[http://dx.doi.org/10.1016/j.bbamem.2009.04.014] [PMID: 19397892]
[2]
Hause, B.M.; Collin, E.A.; Liu, R.; Huang, B.; Sheng, Z.; Lu, W.; Wang, D.; Nelson, E.A.; Li, F. Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. MBio, 2014, 5(2), e00031-e14.
[http://dx.doi.org/10.1128/mBio.00031-14] [PMID: 24595369]
[3]
Kinger, M. Design, synthesis, and anti-influenza viral activities of 1,3-diarylprop-2-en-1-ones: A novel class of neuraminidase inhibitorsArch Pharm Res., 2014, 35(4), 633-635.
[4]
Du, R.; Cui, Q.; Rong, L. Competitive cooperation of hemagglutinin and neuraminidase during influenza a virus entry, 2019, 11(5), 458.
[5]
Hariono, M.; Abdullah, N.; Damodaran, K.V.; Kamarulzaman, E.E.; Mohamed, N.; Hassan, S.S.; Shamsuddin, S.; Wahab, H.A. Potential new h1n1 neuraminidase inhibitors from ferulic acid and vanillin: molecular modelling, synthesis and in vitro assay. Sci. Rep., 2016, 6(1), 38692.
[http://dx.doi.org/10.1038/srep38692] [PMID: 27995961]
[6]
McAuley, J.L.; Gilbertson, B.P.; Trifkovic, S.; Brown, L.E.; McKimm-Breschkin, J.L. Influenza Virus Neuraminidase Structure and Functions. Acta Naturae., 2019, 1(2), 26-32.
[http://dx.doi.org/10.3389/fmicb.2019.00039]
[7]
Liu, Y.; Zhang, L.; Gong, J.; Fang, H.; Liu, A.; Du, G.; Xu, W. Design, synthesis, and biological activity of thiazole derivatives as novel influenza neuraminidase inhibitors. J. Enzyme Inhib. Med. Chem., 2011, 26(4), 506-513.
[http://dx.doi.org/10.3109/14756366.2010.534732] [PMID: 21143042]
[8]
Cheng, L.P.; Wang, T.C.; Yu, R.; Li, M.; Huang, J.W. Design, synthesis and biological evaluation of novel zanamivir derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3622-3629.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.040] [PMID: 30389293]
[9]
Xie, Y.; Huang, B.; Yu, K.; Xu, W. Further discovery of caffeic acid derivatives as novel influenza neuraminidase inhibitors. Bioorg. Med. Chem., 2013, 21(24), 7715-7723.
[http://dx.doi.org/10.1016/j.bmc.2013.10.020] [PMID: 24262883]
[10]
Trebbien, R.; Pedersen, S.S.; Vorborg, K.; Franck, K.T.; Fischer, T.K. Development of oseltamivir and zanamivir resistance in influenza A(H1N1)pdm09 virus, Denmark, 2014. Euro Surveill., 2017, 22(3), 30445.
[http://dx.doi.org/10.2807/1560-7917.ES.2017.22.3.30445] [PMID: 28128091]
[11]
Pozo, F.; Lina, B.; Andrade, H.R.; Enouf, V.; Kossyvakis, A.; Broberg, E.; Daniels, R.; Lackenby, A.; Meijer, A. Community Network of Reference Laboratories for Human Influenza in Europe. Guidance for clinical and public health laboratories testing for influenza virus antiviral drug susceptibility in Europe. J. Clin. Virol., 2013, 57(1), 5-12.
[http://dx.doi.org/10.1016/j.jcv.2013.01.009] [PMID: 23375738]
[12]
Tanase, C.; Coșarcă, S.; Muntean, D-L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, 2019, 24(6), 1182.
[http://dx.doi.org/10.3390/molecules24061182] [PMID: 30917556]
[13]
Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma., 2019, 9, 541.
[http://dx.doi.org/10.3389/fonc.2019.00541]
[14]
Hao, D.C.; Gu, X-J.; Xiao, P.G. Medicinal plants; Woodhead Publishing: Cambridge. 2015, 587-638.
[15]
Genaro-Mattos, T.C.; Maurício, Â.Q.; Rettori, D.; Alonso, A.; Hermes-Lima, M. Antioxidant activity of caffeic acid against iron-induced free radical generation--a chemical approach. PLoS One, 2015, 10(6), e0129963.
[http://dx.doi.org/10.1371/journal.pone.0129963] [PMID: 26098639]
[16]
Adomako-Bonsu, A.G.; Chan, S.L.; Pratten, M.; Fry, J.R. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol. In Vitro, 2017, 40, 248-255.
[http://dx.doi.org/10.1016/j.tiv.2017.01.016] [PMID: 28122265]
[17]
Sun, Y.; Zhu, H.; Wang, J.; Liu, Z.; Bi, J. Isolation and purification of salvianolic acid A and salvianolic acid B from Salvia miltiorrhiza by high-speed counter-current chromatography and comparison of their antioxidant activity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(8-9), 733-737.
[http://dx.doi.org/10.1016/j.jchromb.2009.02.013] [PMID: 19237321]
[18]
Chao, C.Y.; Mong, M.C.; Chan, K.C.; Yin, M.C. Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol. Nutr. Food Res., 2010, 54(3), 388-395.
[http://dx.doi.org/10.1002/mnfr.200900087] [PMID: 19885845]
[19]
Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.M.; Serra, A.T.; Pinto, R.; Freitas, M.; Fernandes, E.; Silva-Lima, B.; Mota-Filipe, H.; Sepodes, B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol., 2015, 116(5), 398-413.
[http://dx.doi.org/10.1111/bcpt.12335] [PMID: 25287116]
[20]
Zeng, X.; Chen, X.; Qin, H.; Han, Y.; Chen, X.; Han, Z.; Zhao, W. Preventive effects of a natural anti-inflammatory agent Salvianolic acid A on acute kidney injury in mice. Food Chem. Toxicol., 2020, 135, 110901-110901.
[http://dx.doi.org/10.1016/j.fct.2019.110901] [PMID: 31654708]
[21]
Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Res. Int., 2018, 2018, 7413504.
[http://dx.doi.org/10.1155/2018/7413504] [PMID: 30105241]
[22]
Abedini, A.; Roumy, V.; Mahieux, S.; Biabiany, M.; Standaert, A.; Rivière, C.; Sahpaz, S.; Bailleul, F.; Neut, C.; Hennebelle, T. Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens poit. (lamiaceae). Evid. Based Complement. Alternat. Med., 2013, 604536(ePub ahead of Print)
[23]
Ogawa, M.; Shirasago, Y.; Ando, S.; Shimojima, M.; Saijo, M.; Fukasawa, M. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro. J. Infect. Chemother., 2018, 24(8), 597-601.
[http://dx.doi.org/10.1016/j.jiac.2018.03.005] [PMID: 29628386]
[24]
Swarup, V.; Ghosh, J.; Ghosh, S.; Saxena, A.; Basu, A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob. Agents Chemother., 2007, 51(9), 3367-3370.
[http://dx.doi.org/10.1128/AAC.00041-07] [PMID: 17576830]
[25]
Matboli, M.; Eissa, S.; Ibrahim, D.; Hegazy, M.G.A.; Imam, S.S.; Habib, E.K. Caffeic acid attenuates diabetic kidney disease via modulation of autophagy in a high-fat diet/streptozotocin- induced diabetic rat. Sci. Rep., 2017, 7(1), 2263.
[http://dx.doi.org/10.1038/s41598-017-02320-z] [PMID: 28536471]
[26]
Yi, L.N.; Lee, S.C. Anti-diabetic activity of rosmarinic acid rich fractions from orthosiphon stamineus. Curr. Enzym. Inhib., 2018, 14(2), 97-103.
[http://dx.doi.org/10.2174/1573408014666180101144331]
[27]
Qiang, G.; Yang, X.; Shi, L.; Zhang, H.; Chen, B.; Zhao, Y.; Zu, M.; Zhou, D.; Guo, J.; Yang, H.; Zhang, L.; Du, G. Antidiabetic effect of salvianolic acid a on diabetic animal models via ampk activation and mitochondrial regulation. Cell. Physiol. Biochem., 2015, 36(1), 395-408.
[http://dx.doi.org/10.1159/000430258] [PMID: 25967977]
[28]
Pelinson, L.P.; Assmann, C.E.; Palma, T.V.; da Cruz, I.B.M.; Pillat, M.M.; Mânica, A.; Stefanello, N.; Weis, G.C.C.; de Oliveira Alves, A.; de Andrade, C.M.; Ulrich, H.; Morsch, V.M.M.; Schetinger, M.R.C.; Bagatini, M.D. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol. Biol. Rep., 2019, 46(2), 2085-2092.
[http://dx.doi.org/10.1007/s11033-019-04658-1] [PMID: 30719606]
[29]
Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl. Microbiol. Biotechnol., 2018, 102(18), 7775-7793.
[http://dx.doi.org/10.1007/s00253-018-9223-y] [PMID: 30022261]
[30]
Ma, L.; Tang, L.; Yi, Q. Salvianolic acids: potential source of natural drugs for the treatment of fibrosis disease and cancer. Front. Pharmacol., 2019, 10(97)
[31]
Xie, Y.; Huang, B.; Yu, K.; Shi, F.; Liu, T.; Xu, W. Caffeic acid derivatives: a new type of influenza neuraminidase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(12), 3556-3560.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.033] [PMID: 23664211]
[32]
Potier, M.; Mameli, L.; Bélisle, M.; Dallaire, L.; Melançon, S.B. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal. Biochem., 1979, 94(2), 287-296.
[http://dx.doi.org/10.1016/0003-2697(79)90362-2] [PMID: 464297]
[33]
Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput., 2011, 7(2), 525-537.
[http://dx.doi.org/10.1021/ct100578z] [PMID: 26596171]
[34]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
[35]
Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem., 2003, 24(13), 1549-1562.
[http://dx.doi.org/10.1002/jcc.10306] [PMID: 12925999]
[36]
Phanich, J.; Rungrotmongkol, T.; Kungwan, N.; Hannongbua, S. Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study. J. Comput. Aided Mol. Des., 2016, 30(10), 917-926.
[http://dx.doi.org/10.1007/s10822-016-9981-5] [PMID: 27714494]
[37]
Mahalapbutr, P.; Wonganan, P.; Chavasiri, W.; Rungrotmongkol, T.; Butoxy Mansonone, G. Butoxy mansonone g inhibits stat3 and akt signaling pathways in non-small cell lung cancers: combined experimental and theoretical investigations. Cancers (Basel), 2019, 11(4), 437.
[http://dx.doi.org/10.3390/cancers11040437] [PMID: 30925736]
[38]
Mahalapbutr, P.; Darai, N.; Panman, W.; Opasmahakul, A.; Kungwan, N.; Hannongbua, S.; Rungrotmongkol, T. Atomistic mechanisms underlying the activation of the G protein-coupled sweet receptor heterodimer by sugar alcohol recognition. Sci. Rep., 2019, 9(1), 10205.
[http://dx.doi.org/10.1038/s41598-019-46668-w] [PMID: 31308429]
[39]
Case, D.; Cerutti, D.; Cheateham, T.; Darden, T.; Duke, R.; Giese, T.; Gohlke, H.; Goetz, A.; Greene, D.; Homeyer, N. AMBER16 Package; University of California: San Francisco, 2016.
[40]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[41]
Kongkaew, S.; Yotmanee, P.; Rungrotmongkol, T.; Kaiyawet, N.; Meeprasert, A.; Kaburaki, T.; Noguchi, H.; Takeuchi, F.; Kungwan, N.; Hannongbua, S. Molecular dynamics simulation reveals the selective binding of human leukocyte antigen alleles associated with BehCet’s disease. PLoS One, 2015, 10(9), e0135575.
[http://dx.doi.org/10.1371/journal.pone.0135575] [PMID: 26331842]
[42]
Mahalapbutr, P.; Wonganan, P.; Charoenwongpaiboon, T.; Prousoontorn, M.; Chavasiri, W.; Rungrotmongkol, T. Enhanced solubility and anticancer potential of mansonone g by β-cyclodextrin-based host-guest complexation: a computational and experimental study. Biomolecules, 2019, 9(10), 545.
[http://dx.doi.org/10.3390/biom9100545] [PMID: 31569832]
[43]
Sanachai, K.; Mahalapbutr, P.; Choowongkomon, K.; Poo-Arporn, R.P.; Wolschann, P.; Rungrotmongkol, T. Insights into the binding recognition and susceptibility of tofacitinib toward janus kinases. ACS Omega, 2020, 5(1), 369-377.
[http://dx.doi.org/10.1021/acsomega.9b02800] [PMID: 31956784]
[44]
Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem., 1992, 13(8), 952-962.
[http://dx.doi.org/10.1002/jcc.540130805]
[45]
Meeprasert, A.; Hannongbua, S.; Rungrotmongkol, T. Key binding and susceptibility of NS3/4A serine protease inhibitors against hepatitis C virus. J. Chem. Inf. Model., 2014, 54(4), 1208-1217.
[http://dx.doi.org/10.1021/ci400605a] [PMID: 24689657]
[46]
Kammarabutr, J.; Mahalapbutr, P.; Nutho, B.; Kungwan, N.; Rungrotmongkol, T. Low susceptibility of asunaprevir towards R155K and D168A point mutations in HCV NS3/4A protease: A molecular dynamics simulation. J. Mol. Graph. Model., 2019, 89, 122-130.
[http://dx.doi.org/10.1016/j.jmgm.2019.03.006] [PMID: 30884449]
[47]
Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; Purisima, E.O. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf. Model., 2007, 47(1), 122-133.
[http://dx.doi.org/10.1021/ci600406v] [PMID: 17238257]
[48]
Wang, C.; Greene, D.; Xiao, L.; Qi, R.; Luo, R. Recent developments and applications of the MMPBSA method. Front. Mol. Biosci., 2018, 4, 87-87.
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[49]
Celej, M.S.; Montich, G.G.; Fidelio, G.D. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci., 2003, 12(7), 1496-1506.
[50]
Vasudevan, K.; Karuppasamy, R. Virtual screening for oseltamivir-resistant a (H5N1) influenza neuraminidase from traditional Chinese medicine database: A combined molecular docking with molecular dynamics approach. SpringerPlus, 2013, 2, 115.
[51]
Lin, D.; Yi, Y.-J.; Xiao, M.-W.; Chen, J.; Ye, J.; Hu, A.-X.; Lian, W.-W.; Liu, A.-L.; Du, G.-H. Design, synthesis and biological evaluation of honokiol derivatives as influenza neuraminidase inhibitors. J. Asian Nat. Prod. Res., 2019, 21(11), 1052-1067.
[52]
Sharma, G.; Vasanth Kumar, S.; Wahab, H.A. Molecular docking, synthesis, and biological evaluation of naphthoquinone as potential novel scaffold for H5N1 neuraminidase inhibition. J. Biomol. Struct. Dynam., 2018, 36(1), 233-242.
[53]
Naumov, P.; Yasuda, N.; Rabeh, W.M.; Bernstein, J. The elusive crystal structure of the neuraminidase inhibitor Tamiflu (oseltamivir phosphate): molecular details of action. Chem. Commun. (Cambridge, England), 2013, 49(19), 1948-1950.
[54]
Yen, H-L.; Hoffmann, E.; Taylor, G.; Scholtissek, C.; Monto, A.S.; Webster, R.G.; Govorkova, E.A. Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J. Virol., 2006, 80(17), 8787-8795.
[55]
Rungrotmongkol, T.; Frecer, V.; De-Eknamkul, W.; Hannongbua, S.; Miertus, S. Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antiv. Res., 2009, 82(1), 51-58.
[56]
Shahbaaz, M.; Amir, M.; Rahman, S.; Mustafa Hasan, G.; Dohare, R.; Bisetty, K.; Ahmad, F.; Kim, J.; Hassan, M.I. Structural insights into Rab21 GTPase activation mechanism by molecular dynamics simulations. Mol. Simul., 2018, 44(3), 179-189.
[57]
Cao, K.; Li, N.; Wang, H.; Cao, X.; He, J.; Zhang, B.; He, Q.-Y.; Zhang, G.; Sun, X. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc. J. Biol. Chem., 2018, 293(16), 6075-6089.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy