Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Optimal Saturated Neuropilin-1 Expression in Normal Tissue Maximizes Tumor Exposure to Anti-Neuropilin-1 Monoclonal Antibody

Author(s): Chao Ma, Xiaofeng Dou, Jianghua Yan, Shengyu Wang, Rongshui Yang, Fu Su*, Huijuan Zhang* and Xinhui Su*

Volume 19, Issue 18, 2019

Page: [2269 - 2275] Pages: 7

DOI: 10.2174/1871520619666191105150235

Price: $65

conference banner
Abstract

Background: As involved in tumor angiogenesis, Neuropilin Receptor type-1 (NRP-1) serves as an attractive target for cancer molecular imaging and therapy. Widespread expression of NRP-1 in normal tissues may affect anti-NRP-1 antibody tumor uptake.

Objective: To assess a novel anti-NRP-1 monoclonal antibody A6-11-26 biodistribution in NRP-1 positive tumor xenograft models to understand the relationships between dose, normal tissue uptake and tumor uptake.

Methods: The A6-11-26 was radiolabeled with 131I and the mice bearing U87MG xenografts were then administered with 131I-labelled A6-11-26 along with 0, 2.5, 5, and 10mg·kg-1 unlabelled antibody A6-11-26. Biodistribution and SPECT/CT imaging were evaluated.

Results: 131I-A6-11-26 was synthesized successfully by hybridoma within 60min. It showed that most of 131IA6- 11-26 were in the plasma and serum (98.5 ± 0.16 and 88.9 ± 5.84, respectively), whereas, less in blood cells. For in vivo biodistribution studies, after only injection of 131I-A6-11-26, high levels of radioactivity were observed in the liver, moderate level in lungs. However, liver and lungs radioactivity uptakes could be competitively blocked by an increasing amount of unlabeled antibody A6-11-26, which can increase tumor radioactivity levels, but not in a dose-dependent manner. A dose between 10 and 20mg·kg-1 of unlabeled antibody A6-11-26 may be the optimal dose that maximized tumor exposure.

Conclusion: Widespread expression of NRP-1 in normal tissue may affect the distribution of A6-11-26 to tumor tissue. An appropriate antibody A6-11-26 dose would be required to saturate normal tissue antigenic sinks to achieve acceptable tumor exposure.

Keywords: Neuropilin-1, monoclonal antibody, molecular therapy, cancer, angiogenesis, xenografts.

Graphical Abstract
[1]
Bagri, A.; Tessier-Lavigne, M.; Watts, R.J. Neuropilins in tumor biology. Clin. Cancer Res., 2009, 15(6), 1860-1864.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0563] [PMID: 19240167]
[2]
Lampropoulou, A.; Ruhrberg, C. Neuropilin regulation of angiogenesis. Biochem. Soc. Trans., 2014, 42(6), 1623-1628.
[http://dx.doi.org/10.1042/BST20140244] [PMID: 25399580]
[3]
Jubb, A.M.; Strickland, L.A.; Liu, S.D.; Mak, J.; Schmidt, M.; Koeppen, H. Neuropilin-1 expression in cancer and development. J. Pathol., 2012, 226(1), 50-60.
[http://dx.doi.org/10.1002/path.2989] [PMID: 22025255]
[4]
Otrock, Z.K.; Makarem, J.A.; Shamseddine, A.I. Vascular endothelial growth factor family of ligands and receptors (Review). Blood Cells Mol. Dis., 2007, 38(3), 258-268.
[http://dx.doi.org/10.1016/j.bcmd.2006.12.003] [PMID: 17344076]
[5]
Zhang, Y.; Liu, P.; Jiang, Y.; Dou, X.; Yan, J.; Ma, C.; Fan, Q.; Wang, W.; Su, F.; Tang, H.; Su, X. High expression of neuropilin-1 associates with unfavorable clinicopathological features in hepatocellular carcinoma. Pathol. Oncol. Res., 2016, 22(2), 367-375.
[http://dx.doi.org/10.1007/s12253-015-0003-z] [PMID: 26563279]
[6]
Chaudhary, B.; Khaled, Y.S.; Ammori, B.J.; Elkord, E. Neuropilin 1: Function and therapeutic potential in cancer. Cancer Immunol. Immunother., 2014, 63(2), 81-99.
[http://dx.doi.org/10.1007/s00262-013-1500-0] [PMID: 24263240]
[7]
Patnaik, A.; LoRusso, P.M.; Messersmith, W.A.; Papadopoulos, K.P.; Gore, L.; Beeram, M.; Ramakrishnan, V.; Kim, A.H.; Beyer, J.C.; Mason Shih, L.; Darbonne, W.C.; Xin, Y.; Yu, R.; Xiang, H.; Brachmann, R.K.; Weekes, C.D. A Phase Ib study evaluating MNRP1685A, a fully human anti-NRP1 monoclonal antibody, in combination with bevacizumab and paclitaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2014, 73(5), 951-960.
[http://dx.doi.org/10.1007/s00280-014-2426-8] [PMID: 24633809]
[8]
Chen, L.; Miao, W.; Tang, X.; Zhang, H.; Wang, S.; Luo, F.; Yan, J. Inhibitory effect of neuropilin-1 monoclonal antibody (NRP-1 MAb) on glioma tumor in mice. J. Biomed. Nanotechnol., 2013, 9(4), 551-558.
[http://dx.doi.org/10.1166/jbn.2013.1623] [PMID: 23621013]
[9]
Zeng, F.; Luo, F.; Lv, S.; Zhang, H.; Cao, C.; Chen, X.; Wang, S.; Li, Z.; Wang, X.; Dou, X.; Dai, Y.; He, M.; Zhang, Y.; Lv, H.; Yan, J.; Chen, Y. A monoclonal antibody targeting neuropilin-1 inhibits adhesion of MCF7 breast cancer cells to fibronectin by suppressing the FAK/p130cas signaling pathway. Anticancer Drugs, 2014, 25(6), 663-672.
[PMID: 24583771]
[10]
Lammerts van Bueren, J.J.; Bleeker, W.K.; Bøgh, H.O.; Houtkamp, M.; Schuurman, J.; van de Winkel, J.G.; Parren, P.W. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action. Cancer Res., 2006, 66(15), 7630-7638.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4010] [PMID: 16885363]
[11]
Bumbaca, D.; Xiang, H.; Boswell, C.A.; Port, R.E.; Stainton, S.L.; Mundo, E.E.; Ulufatu, S.; Bagri, A.; Theil, F.P.; Fielder, P.J.; Khawli, L.A.; Shen, B.Q. Maximizing tumour exposure to anti-neuropilin-1 antibody requires saturation of non-tumour tissue antigenic sinks in mice. Br. J. Pharmacol., 2012, 166(1), 368-377.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01777.x] [PMID: 22074316]
[12]
Dou, X.; Yan, J.; Zhang, Y.; Liu, P.; Jiang, Y.; Lv, S.; Zeng, F.; Chen, X.; Wang, S.; Zhang, H.; Wu, H.; Zhang, H.; Ouyang, L.; Su, X. SPECT imaging of neuropilin receptor type-1 expression with 131I-labeled monoclonal antibody. Int. J. Oncol., 2016, 49(3), 961-970.
[http://dx.doi.org/10.3892/ijo.2016.3579] [PMID: 27315007]
[13]
Su, X.; Cheng, K.; Jeon, J.; Shen, B.; Venturin, G.T.; Hu, X.; Rao, J.; Chin, F.T.; Wu, H.; Cheng, Z. Comparison of two site-specifically (18)F-labeled affibodies for PET imaging of EGFR positive tumors. Mol. Pharm., 2014, 11(11), 3947-3956.
[http://dx.doi.org/10.1021/mp5003043] [PMID: 24972326]
[14]
Su, X.; Cheng, K.; Liu, Y.; Hu, X.; Meng, S.; Cheng, Z. PET imaging of insulin-like growth factor type 1 receptor expression with a 64Cu-labeled Affibody molecule. Amino Acids, 2015, 47(7), 1409-1419.
[http://dx.doi.org/10.1007/s00726-015-1975-4] [PMID: 25854877]
[15]
Mac Gabhann, F.; Popel, A.S. Targeting neuropilin-1 to inhibit VEGF signaling in cancer: Comparison of therapeutic approaches. PLOS Comput. Biol., 2006, 2(12)e180
[http://dx.doi.org/10.1371/journal.pcbi.0020180] [PMID: 17196035]
[16]
Pan, Q.; Chanthery, Y.; Liang, W.C.; Stawicki, S.; Mak, J.; Rathore, N.; Tong, R.K.; Kowalski, J.; Yee, S.F.; Pacheco, G.; Ross, S.; Cheng, Z.; Le Couter, J.; Plowman, G.; Peale, F.; Koch, A.W.; Wu, Y.; Bagri, A.; Tessier-Lavigne, M.; Watts, R.J. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell, 2007, 11(1), 53-67.
[http://dx.doi.org/10.1016/j.ccr.2006.10.018] [PMID: 17222790]
[17]
Kamath, A.V. Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov. Today. Technol., 2016, 21-22, 75-83.
[http://dx.doi.org/10.1016/j.ddtec.2016.09.004] [PMID: 27978991]
[18]
Fujimori, K.; Covell, D.G.; Fletcher, J.E.; Weinstein, J.N. A modeling analysis of monoclonal antibody percolation through tumors: A binding-site barrier. J. Nucl. Med., 1990, 31(7), 1191-1198.
[PMID: 2362198]
[19]
Weekes, C.D.; Beeram, M.; Tolcher, A.W.; Papadopoulos, K.P.; Gore, L.; Hegde, P.; Xin, Y.; Yu, R.; Shih, L.M.; Xiang, H.; Brachmann, R.K.; Patnaik, A. A phase I study of the human monoclonal anti-NRP1 antibody MNRP1685A in patients with advanced solid tumors. Invest. New Drugs, 2014, 32(4), 653-660.
[http://dx.doi.org/10.1007/s10637-014-0071-z] [PMID: 24604265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy