Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

New Applications of Oleanolic Acid and its Derivatives as Cardioprotective Agents: A Review of their Therapeutic Perspectives

Author(s): Ning Sun , Dongli Li , Xiaoqing Chen, Panpan Wu , Yu-Jing Lu , Ning Hou*, Wen-Hua Chen* and Wing-Leung Wong*

Volume 25, Issue 35, 2019

Page: [3740 - 3750] Pages: 11

DOI: 10.2174/1381612825666191105112802

Price: $65

conference banner
Abstract

Oleanolic acid is an analogue of pentacyclic triterpenoids. It has been used as a hepatic drug for over 20 years in China. Currently, there are only five approved drugs derived from pentacyclic triterpenoids, including oleanolic acid (liver diseases), asiaticoside (wound healing), glycyrrhizinate (liver diseases), isoglycyrrhizinate (liver disease) and sodium aescinate (hydrocephalus). To understand more about the bioactivity and functional mechanisms of oleanolic acid, it can be developed as a potent therapeutic agent, in particular, for the prevention and treatment of heart diseases that are the leading cause of death for people worldwide. The primary aim of this mini-review is to summarize the new applications of oleanolic acid and its derivatives as cardioprotective agents reported in recent years and to highlight their therapeutic perspectives in cardiovascular diseases.

Keywords: Oleanolic acid, Pentacyclic triterpenoids, cardioprotective agents, cardiovascular diseases, hepatic drug, asiaticoside.

[1]
Hajar R. Framingham contribution to cardiovascular disease. Heart Views 2016; 17(2): 78-81.
[http://dx.doi.org/10.4103/1995-705X.185130] [PMID: 27512540]
[2]
Soliman EZ, Mendis S, Dissanayake WP, et al. A polypill for primary prevention of cardiovascular disease: a feasibility study of the world health organization. Trials 2011; 12: 3.
[http://dx.doi.org/10.1186/1745-6215-12-3] [PMID: 21205325]
[3]
Volpe M, Francia P. Synergistic effects of cardiac resynchronization therapy and drug up-titration in heart failure: is this enough? Eur Heart J Cardiovasc Pharmacother 2015; 1(3): 189-90.
[http://dx.doi.org/10.1093/ehjcvp/pvv022] [PMID: 27533994]
[4]
Kendall MJ, Rajman I, Maxwell SR. Cardioprotective therapeutics--drugs used in hypertension, hyperlipidaemia, thromboembolism, arrhythmias, the postmenopausal state and as anti-oxidants. Postgrad Med J 1994; 70(823): 329-43.
[http://dx.doi.org/10.1136/pgmj.70.823.329] [PMID: 8016003]
[5]
Moolman JA. Unravelling the cardioprotective mechanism of action of estrogens. Cardiovasc Res 2006; 69(4): 777-80.
[http://dx.doi.org/10.1016/j.cardiores.2006.01.001] [PMID: 16532550]
[6]
Quindry JC, Franklin BA. Cardioprotective exercise and pharmacologic interventions as complementary antidotes to cardiovascular disease. Exerc Sport Sci Rev 2018; 46(1): 5-17.
[http://dx.doi.org/10.1249/JES.0000000000000134] [PMID: 28885265]
[7]
Schuler G, Adams V, Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J 2013; 34(24): 1790-9.
[http://dx.doi.org/10.1093/eurheartj/eht111] [PMID: 23569199]
[8]
Andreadou I, Adamovski P, Bartekova M, et al. Realizing the therapeutic potential of novel cardioprotective therapies: the EU-CARDIOPROTECTION COST Action-CA16225. Cond Med 2018; 1: 116-23.
[9]
Ovize M, Baxter GF, Di Lisa F, et al. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the working group of cellular biology of the heart of the european society of cardiology. Cardiovasc Res 2010; 87(3): 406-23.
[http://dx.doi.org/10.1093/cvr/cvq129] [PMID: 20448097]
[10]
Hausenloy DJ, Erik Bøtker H, Condorelli G, et al. Translating cardioprotection for patient benefit: position paper from the working group of cellular biology of the heart of the european society of cardiology. Cardiovasc Res 2013; 98(1): 7-27.
[http://dx.doi.org/10.1093/cvr/cvt004] [PMID: 23334258]
[11]
Lecour S, Bøtker HE, Condorelli G, et al. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res 2014; 104(3): 399-411.
[http://dx.doi.org/10.1093/cvr/cvu225] [PMID: 25344369]
[12]
Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015; 65(14): 1454-71.
[http://dx.doi.org/10.1016/j.jacc.2015.02.032] [PMID: 25857912]
[13]
Mlakar P, Salobir B, Čobo N, et al. The effect of cardioprotective diet rich with natural antioxidants on chronic inflammation and oxidized LDL during cardiac rehabilitation in patients after acute myocardial infarction. Int J Cardiol Heart Vasc 2015; 7: 40-8.
[http://dx.doi.org/10.1016/j.ijcha.2015.02.003] [PMID: 28785643]
[14]
Shukla SK, Gupta S, Ojha SK, Sharma SB. Cardiovascular friendly natural products: a promising approach in the management of CVD. Nat Prod Res 2010; 24(9): 873-98.
[http://dx.doi.org/10.1080/14786410903417378] [PMID: 20461632]
[15]
Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev 2012; 38(1): 76-87.
[http://dx.doi.org/10.1016/j.ctrv.2011.03.001] [PMID: 21481535]
[16]
Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci 2018; 13: 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004]
[17]
Ojha S, Al Taee H, Goyal S, et al. Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxid Med Cell Longev 2016; 20165724973
[http://dx.doi.org/10.1155/2016/5724973] [PMID: 27313831]
[18]
Sheng H, Sun H. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 2011; 28(3): 543-93.
[http://dx.doi.org/10.1039/c0np00059k] [PMID: 21290067]
[19]
Alqahtani A, Hamid K, Kam A, et al. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr Med Chem 2013; 20(7): 908-31.
[PMID: 23210780]
[20]
Corey EJ, Lee J. Enantioselective total synthesis of oleanolic acid, erythrodiol. beta.-amyrin, and other pentacyclic triterpenes from a common intermediate. J Am Chem Soc 1993; 115: 8873-4.
[http://dx.doi.org/10.1021/ja00072a064]
[21]
Wang YK, Han J, Xiong WJ, et al. Evaluation of in vivo antioxidant and immunity enhancing activities of sodium aescinate injection liquid. Molecules 2012; 17(9): 10267-75.
[http://dx.doi.org/10.3390/molecules170910267] [PMID: 22926307]
[22]
Lin C, Wen X, Sun H. Oleanolic acid derivatives for pharmaceutical use: a patent review. Expert Opin Ther Pat 2016; 26(6): 643-55.
[http://dx.doi.org/10.1080/13543776.2016.1182988] [PMID: 27113324]
[23]
Gutiérrez-Rebolledo GA, Siordia-Reyes AG, Meckes-Fischer M, Jiménez-Arellanes A. Hepatoprotective properties of oleanolic and ursolic acids in antitubercular drug-induced liver damage. Asian Pac J Trop Med 2016; 9(7): 644-51.
[http://dx.doi.org/10.1016/j.apjtm.2016.05.015] [PMID: 27393091]
[24]
Raphael TJ, Kuttan G. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine 2003; 10(6-7): 483-9.
[http://dx.doi.org/10.1078/094471103322331421] [PMID: 13678231]
[25]
Fu L. Isolated and identified of new gisenoside of oleanolic acid type from fresh panax ginseng roots. J Jilin Agri Uni 1998; p. 2.
[26]
Saimaru H, Orihara Y, Tansakul P, Kang YH, Shibuya M, Ebizuka Y. Production of triterpene acids by cell suspension cultures of Olea europaea. Chem Pharm Bull (Tokyo) 2007; 55(5): 784-8.
[http://dx.doi.org/10.1248/cpb.55.784] [PMID: 17473469]
[27]
Ayeleso TB, Matumba MG, Mukwevho E. Oleanolic Acid and Its Derivatives: biological activities and therapeutic potential in chronic diseases. Molecules 2017; 22(11): 22.
[http://dx.doi.org/10.3390/molecules22111915] [PMID: 29137205]
[28]
M.A. Domingues R. Bioactive triterpenic acids: from agroforestry biomass residues to promising therapeutic tools. Mini Rev Org Chem 2014; 11: 382-99.
[http://dx.doi.org/10.2174/1570193X113106660001]
[29]
Luo QF, Liu JH, Chen L. Recent advances in enone and NO-releasing derivatives of oleanolic acid with anti-cancer activity. Mini Rev Org Chem 2014; 11: 355-61.
[http://dx.doi.org/10.2174/1570193X1103140915112325]
[30]
Paszel-Jaworska A, Romaniuk A, Rybczynska M. Molecular mechanisms of biological activity of oleanolic acid - a source of inspiration for a new drugs design. Mini Rev Org Chem 2014; 11: 330-42.
[http://dx.doi.org/10.2174/1570193X1103140915111839]
[31]
Xu K, Chu F, Li G, et al. Oleanolic acid synthetic oligoglycosides: a review on recent progress in biological activities. Pharmazie 2014; 69(7): 483-95.
[PMID: 25073392]
[32]
Ferdowsian HR, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol 2009; 104(7): 947-56.
[http://dx.doi.org/10.1016/j.amjcard.2009.05.032] [PMID: 19766762]
[33]
Lusis AJ. Atherosclerosis. Nature 2000; 407(6801): 233-41.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[34]
Allouche Y, Beltrán G, Gaforio JJ, Uceda M, Mesa MD. Antioxidant and antiatherogenic activities of pentacyclic triterpenic diols and acids. Food Chem Toxicol 2010; 48(10): 2885-90.
[http://dx.doi.org/10.1016/j.fct.2010.07.022] [PMID: 20650302]
[35]
Buus NH, Hansson NC, Rodriguez-Rodriguez R, Stankevicius E, Andersen MR, Simonsen U. Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice. Eur J Pharmacol 2011; 670(2-3): 519-26.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.037] [PMID: 21958874]
[36]
Kim HY, Cho KW, Kang DG, Lee HS. Oleanolic acid increases plasma ANP levels via an accentuation of cardiac ANP synthesis and secretion in rats. Eur J Pharmacol 2013; 710(1-3): 73-9.
[http://dx.doi.org/10.1016/j.ejphar.2013.04.005] [PMID: 23603523]
[37]
Maiwald M, Widmer AF, Rotter ML. Lack of evidence for attributing chlorhexidine as the main active ingredient in skin antiseptics preventing surgical site infections. Infect Control Hosp Epidemiol 2011; 32(4): 404-5.
[http://dx.doi.org/10.1086/659253] [PMID: 21460497]
[38]
Ahn YM, Choi YH, Yoon JJ, et al. Oleanolic acid modulates the renin-angiotensin system and cardiac natriuretic hormone concomitantly with volume and pressure balance in rats. Eur J Pharmacol 2017; 809: 231-41.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.030] [PMID: 28514645]
[39]
Sengupta S, Toh SA, Sellers LA, et al. Modulating angiogenesis: the yin and the yang in ginseng. Circulation 2004; 110(10): 1219-25.
[http://dx.doi.org/10.1161/01.CIR.0000140676.88412.CF] [PMID: 15337705]
[40]
Li-Saw-Hee FL, Lip GY. Digoxin revisited. QJM 1998; 91(4): 259-64.
[http://dx.doi.org/10.1093/qjmed/91.4.259] [PMID: 9666948]
[41]
Chen RJ, Chung TY, Li FY, Lin NH, Tzen JT. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacol Sin 2009; 30(1): 61-9.
[http://dx.doi.org/10.1038/aps.2008.6] [PMID: 19060914]
[42]
Chen RJ, Chung TY, Li FY, Yang WH, Jinn TR, Tzen JT. Steroid-like compounds in chinese medicines promote blood circulation via inhibition of Na+/K+ -ATPase. Acta Pharmacol Sin 2010; 31(6): 696-702.
[http://dx.doi.org/10.1038/aps.2010.61] [PMID: 20523340]
[43]
Prassas I, Diamandis EP. Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 2008; 7(11): 926-35.
[http://dx.doi.org/10.1038/nrd2682] [PMID: 18948999]
[44]
Martínez-González J, Rodríguez-Rodríguez R, González-Díez M, et al. Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. J Nutr 2008; 138(3): 443-8.
[http://dx.doi.org/10.1093/jn/138.3.443] [PMID: 18287347]
[45]
Martínez-González J, Badimon L. Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks. Curr Pharm Des 2007; 13(22): 2215-27.
[http://dx.doi.org/10.2174/138161207781368774] [PMID: 17691994]
[46]
Suh N, Honda T, Finlay HJ, et al. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res 1998; 58(4): 717-23.
[PMID: 9485026]
[47]
Lo YC, Tsou HH, Lin RJ, et al. Endothelium-dependent and -independent vasorelaxation by a theophylline derivative MCPT: roles of cyclic nucleotides, potassium channel opening and phosphodiesterase inhibition. Life Sci 2005; 76(8): 931-44.
[http://dx.doi.org/10.1016/j.lfs.2004.10.009] [PMID: 15589969]
[48]
Rodríguez-Rodríguez R, Herrera MD, Perona JS, Ruiz-Gutiérrez V. Potential vasorelaxant effects of oleanolic acid and erythrodiol, two triterpenoids contained in ‘orujo’ olive oil, on rat aorta. Br J Nutr 2004; 92(4): 635-42.
[http://dx.doi.org/10.1079/BJN20041231] [PMID: 15522132]
[49]
Aguirre-Crespo F, Vergara-Galicia J, Villalobos-Molina R, et al. Ursolic acid mediates the vasorelaxant activity of lepechinia caulescens via NO release in isolated rat thoracic aorta. Life Sci 2006; 79(11): 1062-8.
[http://dx.doi.org/10.1016/j.lfs.2006.03.006] [PMID: 16630635]
[50]
Cihakova D, Rose NR. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol 2008; 99: 95-114.
[http://dx.doi.org/10.1016/S0065-2776(08)00604-4] [PMID: 19117533]
[51]
Martín R, Cordova C, San Román JA, Gutierrez B, Cachofeiro V, Nieto ML. Oleanolic acid modulates the immune-inflammatory response in mice with experimental autoimmune myocarditis and protects from cardiac injury. Therapeutic implications for the human disease. J Mol Cell Cardiol 2014; 72: 250-62.
[http://dx.doi.org/10.1016/j.yjmcc.2014.04.002] [PMID: 24732212]
[52]
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14(1): 38-48.
[http://dx.doi.org/10.1038/nrm3495] [PMID: 23258295]
[53]
Liao HH, Zhang N, Feng H, et al. Oleanolic acid alleviated pressure overload-induced cardiac remodeling. Mol Cell Biochem 2015; 409(1-2): 145-54.
[http://dx.doi.org/10.1007/s11010-015-2520-1] [PMID: 26215454]
[54]
Baines CP, Zhang J, Wang GW, et al. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 2002; 90(4): 390-7.
[http://dx.doi.org/10.1161/01.RES.0000012702.90501.8D] [PMID: 11884367]
[55]
Du Y, Ko KM. Effects of pharmacological preconditioning by emodin/oleanolic acid treatment and/or ischemic preconditioning on mitochondrial antioxidant components as well as the susceptibility to ischemia-reperfusion injury in rat hearts. Mol Cell Biochem 2006; 288(1-2): 135-42.
[http://dx.doi.org/10.1007/s11010-006-9129-3] [PMID: 16583138]
[56]
Otani H, Tanaka H, Inoue T, et al. In vitro study on contribution of oxidative metabolism of isolated rabbit heart mitochondria to myocardial reperfusion injury. Circ Res 1984; 55(2): 168-75.
[http://dx.doi.org/10.1161/01.RES.55.2.168] [PMID: 6086177]
[57]
Du Y, Ko KM. Oleanolic acid protects against myocardial ischemia-reperfusion injury by enhancing mitochondrial antioxidant mechanism mediated by glutathione and alpha-tocopherol in rats. Planta Med 2006; 72(3): 222-7.
[http://dx.doi.org/10.1055/s-2005-916197] [PMID: 16534726]
[58]
Senthil S, Sridevi M, Pugalendi KV. Cardioprotective effect of oleanolic acid on isoproterenol-induced myocardial ischemia in rats. Toxicol Pathol 2007; 35(3): 418-23.
[http://dx.doi.org/10.1080/01926230701230312] [PMID: 17455091]
[59]
Wu J, Li J, Zhu Z, et al. Protective effects of echinocystic acid isolated from gleditsia sinensis lam. against acute myocardial ischemia. Fitoterapia 2010; 81(1): 8-10.
[http://dx.doi.org/10.1016/j.fitote.2009.06.015] [PMID: 19573579]
[60]
Rajamani U, Essop MF. Hyperglycemia-mediated activation of the hexosamine biosynthetic pathway results in myocardial apoptosis. Am J Physiol Cell Physiol 2010; 299(1): 139-47.
[http://dx.doi.org/10.1152/ajpcell.00020.2010] [PMID: 20410435]
[61]
Tsai SJ, Yin MC. Anti-oxidative, anti-glycative and anti-apoptotic effects of oleanolic acid in brain of mice treated by D-galactose. Eur J Pharmacol 2012; 689(1-3): 81-8.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.018] [PMID: 22683839]
[62]
Chan CY, Mong MC, Liu WH, Huang CY, Yin MC. Three pentacyclic triterpenes protect H9c2 cardiomyoblast cells against high-glucose-induced injury. Free Radic Res 2014; 48(4): 402-11.
[http://dx.doi.org/10.3109/10715762.2014.880113] [PMID: 24393047]
[63]
Hu YX, Zhang W, Zhang W, et al. Oleanane triterpene saponins with cardioprotective activity from clinopodium polycephalum. J Asian Nat Prod Res 2017; 19(7): 697-703.
[http://dx.doi.org/10.1080/10286020.2016.1254199] [PMID: 27832701]
[64]
Li S, Zhao J, Liu Y, et al. New triterpenoid saponins from Ilex cornuta and their protective effects against H2O2-induced myocardial cell injury. J Agric Food Chem 2014; 62(2): 488-96.
[http://dx.doi.org/10.1021/jf4046667] [PMID: 24372391]
[65]
Wang J, Ma H, Zhang X, et al. A novel AMPK activator from Chinese herb medicine and ischemia phosphorylate the cardiac transcription factor FOXO3. Int J Physiol Pathophysiol Pharmacol 2009; 1(2): 116-26.
[PMID: 20445824]
[66]
Kalyanavenkataraman S, Nanjan P, Banerji A, Nair BG, Kumar GB. Discovery of arjunolic acid as a novel non-zinc binding carbonic anhydrase II inhibitor. Bioorg Chem 2016; 66: 72-9.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.009] [PMID: 27038848]
[67]
Carvalho G, Pelletier P, Albacker T, et al. Cardioprotective effects of glucose and insulin administration while maintaining normoglycemia (GIN therapy) in patients undergoing coronary artery bypass grafting. J Clin Endocrinol Metab 2011; 96(5): 1469-77.
[http://dx.doi.org/10.1210/jc.2010-1934] [PMID: 21346060]
[68]
Mapanga RF, Rajamani U, Dlamini N, et al. Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction. PLoS One 2012; 7(10)e47322
[http://dx.doi.org/10.1371/journal.pone.0047322] [PMID: 23091615]
[69]
Ziaee M, Khorrami A, Ebrahimi M, et al. Cardioprotective effects of essential oil of lavandula angustifolia on isoproterenol-induced acute myocardial infarction in Rat. Iran J Pharm Res 2015; 14(1): 279-89.
[PMID: 25561934]
[70]
Saad SY, Najjar TA, Al-Rikabi AC. The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol Res 2001; 43(3): 211-8.
[http://dx.doi.org/10.1006/phrs.2000.0769] [PMID: 11401411]
[71]
Menna P, Recalcati S, Cairo G, Minotti G. An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc Toxicol 2007; 7(2): 80-5.
[http://dx.doi.org/10.1007/s12012-007-0011-7] [PMID: 17652809]
[72]
Bains OS, Karkling MJ, Grigliatti TA, Reid RE, Riggs KW. Two nonsynonymous single nucleotide polymorphisms of human carbonyl reductase 1 demonstrate reduced in vitro metabolism of daunorubicin and doxorubicin. Drug Metab Dispos 2009; 37(5): 1107-14.
[http://dx.doi.org/10.1124/dmd.108.024711] [PMID: 19204081]
[73]
Cassidy SC, Chan DP, Rowland DG, Allen HD. Effects of doxorubicin on diastolic function, contractile reserve, and ventricular-vascular coupling in piglets. Pediatr Cardiol 1998; 19(6): 450-7.
[http://dx.doi.org/10.1007/s002469900355] [PMID: 9770569]
[74]
Goyal SN, Mahajan UB, Chandrayan G, et al. Protective effect of oleanolic acid on oxidative injury and cellular abnormalities in doxorubicin induced cardiac toxicity in rats. Am J Transl Res 2016; 8(1): 60-9.
[PMID: 27069540]
[75]
Sarfraz M, Afzal A, Raza SM, et al. Liposomal co-delivered oleanolic acid attenuates doxorubicin-induced multi-organ toxicity in hepatocellular carcinoma. Oncotarget 2017; 8(29): 47136-53.
[http://dx.doi.org/10.18632/oncotarget.17559] [PMID: 28525367]
[76]
Butrous H, Hummel SL. Heart Failure in Older Adults. Can J Cardiol 2016; 32(9): 1140-7.
[http://dx.doi.org/10.1016/j.cjca.2016.05.005] [PMID: 27476982]
[77]
Landmesser U, Wollert KC, Drexler H. Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 2009; 81(3): 519-27.
[http://dx.doi.org/10.1093/cvr/cvn317] [PMID: 19019834]
[78]
Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart 2004; 90(4): 464-70.
[http://dx.doi.org/10.1136/hrt.2002.007005] [PMID: 15020532]
[79]
Dick SA, Epelman S. Chronic Heart Failure and Inflammation: What Do We Really Know? Circ Res 2016; 119(1): 159-76.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308030] [PMID: 27340274]
[80]
Van Linthout S, Tschöpe C. Inflammation - cause or consequence of heart failure or both? Curr Heart Fail Rep 2017; 14(4): 251-65.
[http://dx.doi.org/10.1007/s11897-017-0337-9] [PMID: 28667492]
[81]
Xing L, Jiang M, Dong L, et al. Cardioprotective effects of the YiQiFuMai injection and isolated compounds on attenuating chronic heart failure via NF-κB inactivation and cytokine suppression. J Ethnopharmacol 2013; 148(1): 239-45.
[http://dx.doi.org/10.1016/j.jep.2013.04.019] [PMID: 23619019]
[82]
Wang YQ, Liu CH, Zhang JQ, Zhu DN, Yu BY. Protective effects and active ingredients of yi-qi-fu-mai sterile powder against myocardial oxidative damage in mice. J Pharmacol Sci 2013; 122(1): 17-27.
[http://dx.doi.org/10.1254/jphs.12261FP] [PMID: 23685804]
[83]
Wu D, Zhang Q, Yu Y, et al. Oleanolic acid, a novel endothelin a receptor antagonist, alleviated high glucose-induced cardiomyocytes injury. Am J Chin Med 2018; 46(6): 1187-201.
[http://dx.doi.org/10.1142/S0192415X18500623] [PMID: 30149760]
[84]
Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001; 38(2): 307-14.
[http://dx.doi.org/10.1016/S0735-1097(01)01377-8] [PMID: 11499717]
[85]
Frantz S, Fraccarollo D, Wagner H, et al. Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovasc Res 2003; 57(3): 749-56.
[http://dx.doi.org/10.1016/S0008-6363(02)00723-X] [PMID: 12618236]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy