Research Article

Nano-enhanced Optical Gene Delivery to Retinal Degenerated Mice

Author(s): Subrata Batabyal, Sivakumar Gajjeraman, Sulagna Bhattacharya, Weldon Wright and Samarendra Mohanty*

Volume 19, Issue 5, 2019

Page: [318 - 329] Pages: 12

DOI: 10.2174/1566523219666191017114044

Price: $65

conference banner
Abstract

Background: The efficient and targeted delivery of genes and other impermeable therapeutic molecules into retinal cells is of immense importance for the therapy of various visual disorders. Traditional methods for gene delivery require viral transfection, or chemical methods that suffer from one or many drawbacks, such as low efficiency, lack of spatially targeted delivery, and can generally have deleterious effects, such as unexpected inflammatory responses and immunological reactions.

Methods: We aim to develop a continuous wave near-infrared laser-based Nano-enhanced Optical Delivery (NOD) method for spatially controlled delivery of ambient-light-activatable Muti-Characteristic opsin-encoding genes into retina in-vivo and ex-vivo. In this method, the optical field enhancement by gold nanorods is utilized to transiently permeabilize cell membrane, enabling delivery of exogenous impermeable molecules to nanorod-binding cells in laser-irradiated regions.

Results and Discussion: With viral or other non-viral (e.g. electroporation, lipofection) methods, gene is delivered everywhere, causing uncontrolled expression over the whole retina. This will cause complications in the functioning of non-degenerated areas of the retina. In the NOD method, the contrast in temperature rise in laser-irradiated nanorod-attached cells at nano-hotspots is significant enough to allow site-specific delivery of large genes. The in-vitro and in-vivo results using NOD, clearly demonstrate in-vivo gene delivery and functional cellular expression in targeted retinal regions without compromising the structural integrity of the eye or causing immune response.

Conclusion: The successful delivery and expression of MCO in the targeted retina after in-vivo NOD in the mice models of retinal degeneration opens a new vista for re-photosensitizing retina with geographic atrophies, such as in dry age-related macular degeneration.

Keywords: Ocular gene therapy, optical delivery, optogenetics, dry-AMD, macular degeneration, NOD method.

Graphical Abstract
[1]
Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: Short-term results of a phase I trial. Hum Gene Ther 2008; 19(10): 979-90.
[http://dx.doi.org/10.1089/hum.2008.107] [PMID: 18774912]
[2]
Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006; 5(2): 123-32.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[3]
Burnett JC, Rossi JJ. RNA-based therapeutics: Current progress and future prospects. Chem Biol 2012; 19(1): 60-71.
[http://dx.doi.org/10.1016/j.chembiol.2011.12.008] [PMID: 22284355]
[4]
Herz J, Gerard RD. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 1993; 90(7): 2812-6.
[http://dx.doi.org/10.1073/pnas.90.7.2812] [PMID: 8464893]
[5]
Simon RH, Engelhardt JF, Yang Y, et al. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: Toxicity study. Hum Gene Ther 1993; 4(6): 771-80.
[http://dx.doi.org/10.1089/hum.1993.4.6-771] [PMID: 7514446]
[6]
Ali M, Lemoine NR, Ring CJ. The use of DNA viruses as vectors for gene therapy. Gene Ther 1994; 1(6): 367-84.
[PMID: 7584103]
[7]
Naldini L, Blömer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272(5259): 263-7.
[http://dx.doi.org/10.1126/science.272.5259.263] [PMID: 8602510]
[8]
Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther 2010; 18(1): 80-6.
[http://dx.doi.org/10.1038/mt.2009.255] [PMID: 19904234]
[9]
Grunwald JE, Pistilli M, Ying GS, Maguire MG, Daniel E, Martin DF. Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2015; 122(4): 809-16.
[http://dx.doi.org/10.1016/j.ophtha.2014.11.007] [PMID: 25542520]
[10]
Wu Z, Ayton LN, Luu CD, Guymer RH. Microperimetry of nascent geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 2014; 56(1): 115-21.
[http://dx.doi.org/10.1167/iovs.14-15614] [PMID: 25515578]
[11]
Wallsh J, Gallemore R. Optical coherence tomography difference maps and average macular volume for geographic atrophy. Retin Cases Brief Rep 2015; 9(1): 88-91.
[http://dx.doi.org/10.1097/ICB.0000000000000092] [PMID: 25383849]
[12]
Biarnés M, Monés J, Alonso J, Arias L. Update on geographic atrophy in age-related macular degeneration. Optom Vis Sci 2011; 88(7): 881-9.
[http://dx.doi.org/10.1097/OPX.0b013e31821988c1] [PMID: 21532519]
[13]
Sunness JS, Margalit E, Srikumaran D, et al. The long-term natural history of geographic atrophy from age-related macular degeneration: Enlargement of atrophy and implications for interventional clinical trials. Ophthalmology 2007; 114(2): 271-7.
[http://dx.doi.org/10.1016/j.ophtha.2006.09.016] [PMID: 17270676]
[14]
Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 2004; 101(1): 16-22.
[http://dx.doi.org/10.1073/pnas.2235688100] [PMID: 14603031]
[15]
Mohanty SK, Ficinski M, Wong EK, Berns MW. Method and apparatus for optogenetic treatment of blindness including retinitis pigmentosa United States patent US9089698B2.. 2015.
[16]
Wells DJ. Electroporation and ultrasound enhanced non-viral gene delivery in vitro and in vivo. Cell Biol Toxicol 2010; 26(1): 21-8.
[http://dx.doi.org/10.1007/s10565-009-9144-8] [PMID: 19949971]
[17]
Bejjani RA, BenEzra D, Cohen H, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 2005; 11: 124-32.
[PMID: 15735602]
[18]
Han Z, Koirala A, Makkia R, Cooper MJ, Naash MI. Direct gene transfer with compacted DNA nanoparticles in retinal pigment epithelial cells: Expression, repeat delivery and lack of toxicity. Nanomedicine (Lond) 2012; 7(4): 521-39.
[http://dx.doi.org/10.2217/nnm.11.158] [PMID: 22356602]
[19]
Wang Y, Rajala A, Cao B, et al. Cell-Specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics 2016; 6(10): 1514-27.
[http://dx.doi.org/10.7150/thno.15230] [PMID: 27446487]
[20]
Wang Y, Rajala A, Rajala RV. Lipid nanoparticles for ocular gene delivery. J Funct Biomater 2015; 6(2): 379-94.
[http://dx.doi.org/10.3390/jfb6020379] [PMID: 26062170]
[21]
Li S, Huang L. Nonviral gene therapy: Promises and challenges. Gene Ther 2000; 7(1): 31-4.
[http://dx.doi.org/10.1038/sj.gt.3301110] [PMID: 10680013]
[22]
Dhakal K, Black B, Mohanty S. Introduction of impermeable actin-staining molecules to mammalian cells by optoporation. Sci Rep 2014; 4: 6553.
[http://dx.doi.org/10.1038/srep06553] [PMID: 25315642]
[23]
Dhakal K, Batabyal S, Wright W, Kim Y-T, Mohanty S. Optical delivery of multiple opsin-encoding genes leads to targeted expression and white-light activation. Light Sci Appl 2015; 4: e352.
[http://dx.doi.org/10.1038/lsa.2015.125]
[24]
Gu L, Mohanty SK. Targeted microinjection into cells and retina using optoporation. J Biomed Opt 2011; 16(12)128003
[http://dx.doi.org/10.1117/1.3662887] [PMID: 22191939]
[25]
Wilson AM, Mazzaferri J, Bergeron É, et al. In vivo laser-mediated retinal ganglion cell optoporation using KV1. 1 conjugated gold nanoparticles. Nano Lett 2018; 18(11): 6981-8.
[http://dx.doi.org/10.1021/acs.nanolett.8b02896] [PMID: 30285455]
[26]
Batabyal S, Kim Y-T, Mohanty S. Ultrafast laser-assisted spatially targeted optoporation into cortical axons and retinal cells in the eye. J Biomed Opt 2017; 22(6): 60504.
[http://dx.doi.org/10.1117/1.JBO.22.6.060504] [PMID: 28662241]
[27]
Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006; 50(1): 23-33.
[http://dx.doi.org/10.1016/j.neuron.2006.02.026] [PMID: 16600853]
[28]
Thyagarajan S, van Wyk M, Lehmann K, Löwel S, Feng G, Wässle H. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 2010; 30(26): 8745-58.
[http://dx.doi.org/10.1523/JNEUROSCI.4417-09.2010] [PMID: 20592196]
[29]
Zhang Y, Ivanova E, Bi A, Pan Z-H. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci 2009; 29(29): 9186-96.
[http://dx.doi.org/10.1523/JNEUROSCI.0184-09.2009] [PMID: 19625509]
[30]
Tomita H, Sugano E, Isago H, et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 2010; 90(3): 429-36.
[http://dx.doi.org/10.1016/j.exer.2009.12.006] [PMID: 20036655]
[31]
Tomita H, Sugano E, Fukazawa Y, et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 2009; 4(11)e7679
[http://dx.doi.org/10.1371/journal.pone.0007679] [PMID: 19893752]
[32]
Gu L, Shivalingaiah S, Ficinski M, Wong E, Mohanty S. Non-viral delivery and optimized optogenetic stimulation of retinal ganglion cells led to behavioral restoration of vision. Nat Preced 2012; Vol.2012.
[http://dx.doi.org/10.1038/npre.2012.6869.1]
[33]
Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008; 11(6): 667-75.
[http://dx.doi.org/10.1038/nn.2117] [PMID: 18432197]
[34]
Doroudchi MM, et al. Virally delivered Channelrhodopsin-2 Safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011; 19: 1220-9.
[http://dx.doi.org/10.1038/mt.2011.69]
[35]
Wright W, Gajjeraman S, Batabyal S, et al. Restoring vision in mice with retinal degeneration using multicharacteristic opsin. Neurophotonics 2017; 4(4)041505
[PMID: 28948190]
[36]
Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010; 329(5990): 413-7.
[http://dx.doi.org/10.1126/science.1190897] [PMID: 20576849]
[37]
Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008; 358(21): 2231-9.
[http://dx.doi.org/10.1056/NEJMoa0802268] [PMID: 18441371]
[38]
Ivanova E, Roberts R, Bissig D, Pan Z-H, Berkowitz BA. Retinal channelrhodopsin-2-mediated activity in vivo evaluated with manganese-enhanced magnetic resonance imaging. Mol Vis 2010; 16: 1059-67.
[PMID: 20596255]
[39]
Chaowen W, Ivanova E, Zhang Y, Pan Z-H. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS One 2013; 8(6)e66332
[http://dx.doi.org/10.1016/j.neuron.2006.02.026] [PMID: 16600853]
[40]
Adler DC, Huber R, Fujimoto JG. Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. Opt Lett 2007; 32(6): 626-8.
[http://dx.doi.org/10.1364/OL.32.000626] [PMID: 17308582]
[41]
Choma MA, Ellerbee AK, Yang C, Creazzo TL, Izatt JA. Spectral-domain phase microscopy. Opt Lett 2005; 30(10): 1162-4.
[http://dx.doi.org/10.1364/OL.30.001162] [PMID: 15945141]
[42]
Joo C, Akkin T, Cense B, Park BH, de Boer JF. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt Lett 2005; 30(16): 2131-3.
[http://dx.doi.org/10.1364/OL.30.002131] [PMID: 16127933]
[43]
Joo C, Kim KH, de Boer JF. Spectral-domain optical coherence phase and multiphoton microscopy. Opt Lett 2007; 32(6): 623-5.
[http://dx.doi.org/10.1364/OL.32.000623] [PMID: 17308581]
[44]
Sarunic MV, Weinberg S, Izatt JA. Full-field swept-source phase microscopy. Opt Lett 2006; 31(10): 1462-4.
[http://dx.doi.org/10.1364/OL.31.001462] [PMID: 16642139]
[45]
Wang RK, Nuttall AL. Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study. J Biomed Opt 2010; 15(5): 056005-9.
[http://dx.doi.org/10.1117/1.3486543] [PMID: 21054099]
[46]
Liu Y, McDowell CM, Zhang Z, Tebow HE, Wordinger RJ, Clark AF. Monitoring retinal morphologic and functional changes in mice following optic nerve crush. Invest Ophthalmol Vis Sci 2014; 55(6): 3766-74.
[http://dx.doi.org/10.1167/iovs.14-13895] [PMID: 24854856]
[47]
Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH, Clark AF. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener 2016; 11: 30.
[http://dx.doi.org/10.1186/s13024-016-0093-4] [PMID: 27098079]
[48]
Kim BJ, Sprehe N, Morganti A, Wordinger RJ, Clark AF. The effect of postmortem time on the RNA quality of human ocular tissues. Mol Vis 2013; 19: 1290-5.
[PMID: 23805035]
[49]
Klein ML, Ferris FL III, Francis PJ, et al. Progression of geographic atrophy and genotype in age-related macular degeneration Ophthalmology 2010; 117(8): 1554-1559, 1559.e1..
[http://dx.doi.org/10.1016/j.ophtha.2009.12.012] [PMID: 20381870]
[50]
Fleckenstein M, Schmitz-Valckenberg S, Adrion C, et al. Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration. Invest Ophthalmol Vis Sci 2010; 51(8): 3846-52.
[http://dx.doi.org/10.1167/iovs.09-4533] [PMID: 20357194]
[51]
Sunness JS, Applegate CA, Bressler NM, Hawkins BS. Designing clinical trials for age-related geographic atrophy of the macula: Enrollment data from the geographic atrophy natural history study. Retina 2007; 27(2): 204-10.
[http://dx.doi.org/10.1097/01.iae.0000248148.56560.b1] [PMID: 17290203]
[52]
Jacobson SG, Roman AJ, Aleman TS, et al. Normal central retinal function and structure preserved in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2010; 51(2): 1079-85.
[http://dx.doi.org/10.1167/iovs.09-4372] [PMID: 19797198]
[53]
Wang S, Chen KJ, Wu TH, et al. Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. Angew Chem Int Ed Engl 2010; 49(22): 3777-81.
[http://dx.doi.org/10.1002/anie.201000062] [PMID: 20391446]
[54]
Cheng Y, Samia AC, Li J, Kenney ME, Resnick A, Burda C. Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Langmuir 2010; 26(4): 2248-55.
[http://dx.doi.org/10.1021/la902390d] [PMID: 19719162]
[55]
Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 2010; 5(6): 465-72.
[http://dx.doi.org/10.1038/nnano.2010.58] [PMID: 20383126]
[56]
Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 2007; 19: 3136-41.
[http://dx.doi.org/10.1002/adma.200701974] [PMID: 19020672]
[57]
Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006; 128(6): 2115-20.
[http://dx.doi.org/10.1021/ja057254a] [PMID: 16464114]
[58]
Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007; 7(7): 1929-34.
[http://dx.doi.org/10.1021/nl070610y] [PMID: 17550297]
[59]
Brongersma ML. Nanoscale photonics: Nanoshells: Gifts in a gold wrapper. Nat Mater 2003; 2(5): 296-7.
[http://dx.doi.org/10.1038/nmat891] [PMID: 12728232]
[60]
Chen J, Wang D, Xi J, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007; 7(5): 1318-22.
[http://dx.doi.org/10.1021/nl070345g] [PMID: 17430005]
[61]
Chen J, Saeki F, Wiley BJ, et al. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005; 5(3): 473-7.
[http://dx.doi.org/10.1021/nl047950t] [PMID: 15755097]
[62]
Mori K, Gehlbach P, Ando A, et al. Intraocular adenoviral vector-mediated gene transfer in proliferative retinopathies. Invest Ophthalmol Vis Sci 2002; 43(5): 1610-5.
[PMID: 11980881]
[63]
Howell GR, Macalinao DG, Sousa GL, et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 2011; 121(4): 1429-44.
[http://dx.doi.org/10.1172/JCI44646] [PMID: 21383504]
[64]
Silverman SM, Kim BJ, Howell GR, et al. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Mol Neurodegener 2016; 11: 24.
[http://dx.doi.org/10.1186/s13024-016-0089-0] [PMID: 27008854]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy