Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Natural DNA Intercalators as Promising Therapeutics for Cancer and Infectious Diseases

Author(s): Martyna Godzieba* and Slawomir Ciesielski

Volume 20, Issue 1, 2020

Page: [19 - 32] Pages: 14

DOI: 10.2174/1568009619666191007112516

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, the improper use of drugs, or their abuse are conducive to the increase of morbidity and mortality caused by these diseases. The imperfections of drugs currently used in therapy for these diseases and the increasing problem of drug resistance have forced a search for new substances with therapeutic potential. Throughout history, plants, animals, fungi and microorganisms have been rich sources of biologically active compounds. Even today, despite the development of chemistry and the introduction of many synthetic chemotherapeutics, a substantial part of the new compounds being tested for treatment are still of natural origin. Natural compounds exhibit a great diversity of chemical structures, and thus possess diverse mechanisms of action and molecular targets. Nucleic acids seem to be a good molecular target for substances with anticancer potential in particular, but they may also be a target for antimicrobial compounds. There are many types of interactions of small-molecule ligands with DNA. This publication focuses on the intercalation process. Intercalators are compounds that usually have planar aromatic moieties and can insert themselves between adjacent base pairs in the DNA helix. These types of interactions change the structure of DNA, leading to various types of disorders in the functioning of cells and the cell cycle. This article presents the most promising intercalators of natural origin, which have aroused interest in recent years due to their therapeutic potential.

Keywords: Intercalators, drugs, DNA binding, anticancer, antimicrobial, alkylating compounds.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Top 10 causes of death. http://www.who.int/gho/mortality_ burden_disease/causes_death/top_10/en/ (Accessed Jul 28, 2018)
[3]
Cox, G.; Wright, G.D. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol., 2013, 303(6-7), 287-292.
[http://dx.doi.org/10.1016/j.ijmm.2013.02.009] [PMID: 23499305]
[4]
MacGowan, A.; Macnaughton, E. Antibiotic Resistance. Medicine (Baltimore), 2017, 45, 622-628.
[5]
Wijdeven, R.H.; Pang, B.; Assaraf, Y.G.; Neefjes, J. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat., 2016, 28, 65-81.
[http://dx.doi.org/10.1016/j.drup.2016.07.001] [PMID: 27620955]
[6]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[7]
Luo, Q.; Wu, X.; Zhang, Y.; Shu, T.; Ding, F.; Chen, H.; Zhao, P.; Chang, W.; Zhu, X.; Liu, Z. ARID1A ablation leads to multiple drug resistance in ovarian cancer via transcriptional activation of MRP2. Cancer Lett., 2018, 427, 9-17.
[http://dx.doi.org/10.1016/j.canlet.2018.04.013] [PMID: 29660381]
[8]
Vyse, S.; McCarthy, F.; Broncel, M.; Paul, A.; Wong, J.P.; Bhamra, A.; Huang, P.H. Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib. J. Proteomics, 2018, 170, 130-140.
[http://dx.doi.org/10.1016/j.jprot.2017.08.015] [PMID: 28842319]
[9]
Smerkova, K.; Vaculovic, T.; Vaculovicova, M.; Kynicky, J.; Brtnicky, M.; Eckschlager, T.; Stiborova, M.; Hubalek, J.; Adam, V. DNA interaction with platinum-based cytostatics revealed by DNA sequencing. Anal. Biochem., 2017, 539, 22-28.
[http://dx.doi.org/10.1016/j.ab.2017.09.018] [PMID: 28970072]
[10]
Gurova, K. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol., 2009, 5(10), 1685-1704.
[http://dx.doi.org/10.2217/fon.09.127] [PMID: 20001804]
[11]
Krzak, A.; Swiech, O.; Majdecki, M.; Bilewicz, R. Complexing daunorubicin with β-cyclodextrin derivative increases drug intercalation into DNA. Electrochim. Acta, 2017, 247, 139-148.
[http://dx.doi.org/10.1016/j.electacta.2017.06.140]
[12]
Portugal, J. Challenging transcription by DNA-binding antitumor drugs. Biochem. Pharmacol., 2018, 155, 336-345.
[http://dx.doi.org/10.1016/j.bcp.2018.07.030] [PMID: 30040927]
[13]
Tse, W.C.; Boger, D.L. Sequence-selective DNA recognition: natural products and nature’s lessons. Chem. Biol., 2004, 11(12), 1607-1617.
[http://dx.doi.org/10.1016/j.chembiol.2003.08.012] [PMID: 15610844]
[14]
Montaner, B.; Castillo-Ávila, W.; Martinell, M.; Öllinger, R.; Aymami, J.; Giralt, E.; Pérez-Tomás, R. DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicol. Sci., 2005, 85(2), 870-879.
[http://dx.doi.org/10.1093/toxsci/kfi149] [PMID: 15788728]
[15]
Silvestri, C.; Brodbelt, J.S. Tandem mass spectrometry for characterization of covalent adducts of DNA with anticancer therapeutics. Mass Spectrom. Rev., 2013, 32(4), 247-266.
[http://dx.doi.org/10.1002/mas.21363] [PMID: 23150278]
[16]
Sobol, Z.; Engel, M.E.; Rubitski, E.; Ku, W.W.; Aubrecht, J.; Schiestl, R.H. Genotoxicity profiles of common alkyl halides and esters with alkylating activity. Mutat. Res., 2007, 633(2), 80-94.
[http://dx.doi.org/10.1016/j.mrgentox.2007.05.004] [PMID: 17644026]
[17]
Puyo, S.; Montaudon, D.; Pourquier, P. From old alkylating agents to new minor groove binders. Crit. Rev. Oncol. Hematol., 2014, 89(1), 43-61.
[http://dx.doi.org/10.1016/j.critrevonc.2013.07.006] [PMID: 23972663]
[18]
Ralhan, R.; Kaur, J. Alkylating agents and cancer therapy. Expert Opin. Ther. Pat., 2007, 17, 1061-1075.
[http://dx.doi.org/10.1517/13543776.17.9.1061]
[19]
Sirajuddin, M.; Ali, S.; Badshah, A. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B, 2013, 124, 1-19.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.03.013] [PMID: 23648795]
[20]
Drabløs, F.; Feyzi, E.; Aas, P.A.; Vaagbø, C.B.; Kavli, B.; Bratlie, M.S.; Peña-Diaz, J.; Otterlei, M.; Slupphaug, G.; Krokan, H.E. Alkylation damage in DNA and RNA--repair mechanisms and medical significance. DNA Repair (Amst.), 2004, 3(11), 1389-1407.
[http://dx.doi.org/10.1016/j.dnarep.2004.05.004] [PMID: 15380096]
[21]
Bruzaca, E.E.S.; Lopes, I.C.; Silva, E.H.C.; Carvalho, P.A.V.; Tanaka, A.A. Electrochemical oxidation of the antitumor antibiotic mitomycin c and in situ evaluation of its interaction with DNA using a DNA-electrochemical biosensor. Microchem. J., 2017, 133, 81-89.
[http://dx.doi.org/10.1016/j.microc.2017.03.030]
[22]
Messori, L.; Merlino, A. Cisplatin binding to proteins: A structural perspective. Coord. Chem. Rev., 2016, 315, 67-89.
[http://dx.doi.org/10.1016/j.ccr.2016.01.010]
[23]
Rehman, S.U.; Sarwar, T.; Husain, M.A.; Ishqi, H.M.; Tabish, M. Studying non-covalent drug-DNA interactions. Arch. Biochem. Biophys., 2015, 576, 49-60.
[http://dx.doi.org/10.1016/j.abb.2015.03.024] [PMID: 25951786]
[24]
Khan, G.S.; Shah, A. Zia-ur-Rehman; Barker, D. Chemistry of DNA minor groove binding agents. J. Photochem. Photobiol. B, 2012, 115, 105-118.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.07.003] [PMID: 22857824]
[25]
Cai, X.; Gray, P.J., Jr; Von Hoff, D.D. DNA minor groove binders: back in the groove. Cancer Treat. Rev., 2009, 35(5), 437-450.
[http://dx.doi.org/10.1016/j.ctrv.2009.02.004] [PMID: 19328629]
[26]
Hasanzadeh, M.; Shadjou, N. Pharmacogenomic study using bio- and nanobioelectrochemistry: Drug-DNA interaction. Mater. Sci. Eng. C, 2016, 61, 1002-1017.
[http://dx.doi.org/10.1016/j.msec.2015.12.020] [PMID: 26838928]
[27]
D’Incalci, M.; Sessa, C. DNA minor groove binding ligands: a new class of anticancer agents. Expert Opin. Investig. Drugs, 1997, 6(7), 875-884.
[http://dx.doi.org/10.1517/13543784.6.7.875] [PMID: 15989650]
[28]
Barrett, M.P.; Gemmell, C.G.; Suckling, C.J. Minor groove binders as anti-infective agents. Pharmacol. Ther., 2013, 139(1), 12-23.
[http://dx.doi.org/10.1016/j.pharmthera.2013.03.002] [PMID: 23507040]
[29]
Ferguson, L.R.; Denny, W.A. Genotoxicity of non-covalent interactions: DNA intercalators. Mutat. Res., 2007, 623(1-2), 14-23.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.014] [PMID: 17498749]
[30]
Rescifina, A.; Zagni, C.; Varrica, M.G.; Pistarà, V.; Corsaro, A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur. J. Med. Chem., 2014, 74, 95-115.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.029] [PMID: 24448420]
[31]
Nial, J. Wheate; Craig R. Brodie; J. Grant Collins; Sharon Kemp; Janice R. Aldrich-Wright. DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis. Mini Rev. Med. Chem., 2007, 7, 627-648.
[http://dx.doi.org/10.2174/138955707780859413]
[32]
Tanious, F.A.; Yen, S.F.; Wilson, W.D. Kinetic and equilibrium analysis of a threading intercalation mode: DNA sequence and ion effects. Biochemistry, 1991, 30(7), 1813-1819.
[http://dx.doi.org/10.1021/bi00221a013] [PMID: 1993195]
[33]
Duskova, K.; Sierra, S.; Fernández, M-J.; Gude, L.; Lorente, A. Synthesis and DNA interaction of ethylenediamine platinum(II) complexes linked to DNA intercalants. Bioorg. Med. Chem., 2012, 20(24), 7112-7118.
[http://dx.doi.org/10.1016/j.bmc.2012.09.055] [PMID: 23142323]
[34]
Lorente, A.; Vázquez, Y.G.; Fernández, M-J.; Ferrández, A. Bisacridines with aromatic linking chains. Synthesis, DNA interaction, and antitumor activity. Bioorg. Med. Chem., 2004, 12(16), 4307-4312.
[http://dx.doi.org/10.1016/j.bmc.2004.06.021] [PMID: 15332297]
[35]
Takagi, M. Threading intercalation to double-stranded DNA and the application to DNA sensing. electrochemical array technique. Pure Appl. Chem., 2001, 73, 1573-1577.
[http://dx.doi.org/10.1351/pac200173101573]
[36]
Boer, D.R.; Wu, L.; Lincoln, P.; Coll, M. Thread insertion of a bis(dipyridophenazine) diruthenium complex into the DNA double helix by the extrusion of AT base pairs and cross-linking of DNA duplexes. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1949-1952.
[http://dx.doi.org/10.1002/anie.201308070] [PMID: 24449275]
[37]
Veal, J.M.; Li, Y.; Zimmerman, S.C.; Lamberson, C.R.; Cory, M.; Zon, G.; Wilson, W.D. Interaction of a macrocyclic bisacridine with DNA. Biochemistry, 1990, 29(49), 10918-10927.
[http://dx.doi.org/10.1021/bi00501a009] [PMID: 2271691]
[38]
Nowak, K. Chemical structures and biological activities of bis - and tetrakis -acridine derivatives: A review. J. Mol. Struct., 2017, 1146, 562-570.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.042]
[39]
Moradi, S.Z.; Nowroozi, A.; Sadrjavadi, K.; Moradi, S.; Mansouri, K.; Hosseinzadeh, L.; Shahlaei, M. Direct evidences for the groove binding of the Clomifene to double stranded DNA. Int. J. Biol. Macromol., 2018, 114, 40-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.040] [PMID: 29555513]
[40]
Vologodskii, A.; Frank-Kamenetskii, M.D. DNA melting and energetics of the double helix. Phys. Life Rev., 2018, 25, 1-21.
[http://dx.doi.org/10.1016/j.plrev.2017.11.012] [PMID: 29170011]
[41]
Marques, R.A.; Gomes, A.O.C.V.; de Brito, M.V.; Dos Santos, A.L.P.; da Silva, G.S.; de Lima, L.B.; Nunes, F.M.; de Mattos, M.C.; de Oliveira, F.C.E.; do Ó Pessoa, C.; de Moraes, M.O.; de Fátima, Â.; Franco, L.L.; Silva, M.M.; Dantas, M.D.A.; Santos, J.C.C.; Figueiredo, I.M.; da Silva-Júnior, E.F.; de Aquino, T.M.; de Araújo-Júnior, J.X.; de Oliveira, M.C.F.; Leslie Gunatilaka, A.A. Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA. J. Photochem. Photobiol. B, 2018, 179, 156-166.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.01.016] [PMID: 29413989]
[42]
Zhou, X.; Zhang, G.; Pan, J. Groove binding interaction between daphnetin and calf thymus DNA. Int. J. Biol. Macromol., 2015, 74, 185-194.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.018] [PMID: 25541356]
[43]
Shahabadi, N.; Fatahi, N.; Mahdavi, M.; Nejad, Z.K.; Pourfoulad, M. Multispectroscopic studies of the interaction of calf thymus DNA with the anti-viral drug, valacyclovir. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 83(1), 420-424.
[http://dx.doi.org/10.1016/j.saa.2011.08.056] [PMID: 21930421]
[44]
Khajeh, M.A.; Dehghan, G.; Dastmalchi, S.; Shaghaghi, M.; Iranshahi, M. Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 192, 384-392.
[http://dx.doi.org/10.1016/j.saa.2017.11.042] [PMID: 29195192]
[45]
Hampshire, A.J.; Rusling, D.A.; Broughton-Head, V.J.; Fox, K.R. Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands. Methods, 2007, 42(2), 128-140.
[http://dx.doi.org/10.1016/j.ymeth.2007.01.002] [PMID: 17472895]
[46]
Kashanian, S.; Dolatabadi, J.E.N. DNA Binding Studies of 2-Tert-Butylhydroquinone (TBHQ). Food Additive. Food Chem., 2009, 116, 743-747.
[47]
Ataci, N.; Ozcelik, E.; Arsu, N. Spectrophotometric study on binding of 2-thioxanthone acetic acid with ct-DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 204, 281-286.
[http://dx.doi.org/10.1016/j.saa.2018.06.001] [PMID: 29945110]
[48]
Li, H-D.; Chen, X.; Yang, Y.; Huang, H-M.; Zhang, L.; Zhang, X.; Zhang, L.; Huang, C.; Meng, X-M.; Li, J. Wogonin attenuates inflammation by activating PPAR-γ in alcoholic liver disease. Int. Immunopharmacol., 2017, 50, 95-106.
[http://dx.doi.org/10.1016/j.intimp.2017.06.013] [PMID: 28646664]
[49]
Khan, N.M.; Ahmad, I.; Ansari, M.Y.; Haqqi, T.M. Wogonin, a natural flavonoid, intercalates with genomic DNA and exhibits protective effects in IL-1β stimulated osteoarthritis chondrocytes. Chem. Biol. Interact., 2017, 274, 13-23.
[http://dx.doi.org/10.1016/j.cbi.2017.06.025] [PMID: 28688942]
[50]
Khan, S.; Zhang, D.; Zhang, Y.; Li, M.; Wang, C. Wogonin attenuates diabetic cardiomyopathy through its anti-inflammatory and anti-oxidative properties. Mol. Cell. Endocrinol., 2016, 428, 101-108.
[http://dx.doi.org/10.1016/j.mce.2016.03.025] [PMID: 27013352]
[51]
Huynh, D.L.; Sharma, N.; Kumar Singh, A.; Singh Sodhi, S.; Zhang, J-J.; Mongre, R.K.; Ghosh, M.; Kim, N.; Ho Park, Y.; Kee Jeong, D. Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin. J. Nat. Med., 2017, 15(1), 15-40.
[http://dx.doi.org/10.1016/S1875-5364(17)30005-5] [PMID: 28259249]
[52]
Baumann, S.; Fas, S.C.; Giaisi, M.; Müller, W.W.; Merling, A.; Gülow, K.; Edler, L.; Krammer, P.H.; Li-Weber, M. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis. Blood, 2008, 111(4), 2354-2363.
[http://dx.doi.org/10.1182/blood-2007-06-096198] [PMID: 18070986]
[53]
Das, A.; Majumder, D.; Saha, C. Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage. J. Photochem. Photobiol. B, 2017, 170, 256-262.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.04.019] [PMID: 28456117]
[54]
Sun, Y.; Bi, S.; Song, D.; Qiao, C.; Mu, D.; Zhang, H. Study on the interaction mechanism between DNA and the main active components in scutellaria baicalensis georgi. Sens. Actuators B Chem., 2008, 129, 799-810.
[http://dx.doi.org/10.1016/j.snb.2007.09.082]
[55]
Chirumbolo, S. Anticancer properties of the flavone wogonin. Toxicology, 2013, 314(1), 60-64.
[http://dx.doi.org/10.1016/j.tox.2013.08.016] [PMID: 23994129]
[56]
Chen, H.; Gao, Y.; Wu, J.; Chen, Y.; Chen, B.; Hu, J.; Zhou, J. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett., 2014, 354(1), 5-11.
[http://dx.doi.org/10.1016/j.canlet.2014.08.003] [PMID: 25128647]
[57]
Zhao, Q.Y.; Yuan, F.W.; Liang, T.; Liang, X.C.; Luo, Y.R.; Jiang, M.; Qing, S.Z.; Zhang, W.M. Baicalin inhibits Escherichia coli isolates in bovine mastitic milk and reduces antimicrobial resistance. J. Dairy Sci., 2018, 101(3), 2415-2422.
[http://dx.doi.org/10.3168/jds.2017-13349] [PMID: 29290430]
[58]
Sung, B.; Chung, H.Y.; Kim, N.D. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev., 2016, 21(4), 216-226.
[http://dx.doi.org/10.15430/JCP.2016.21.4.216] [PMID: 28053955]
[59]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Garg, V.K.; Buttar, H.S.; Setzer, W.N.; Sethi, G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods, 2018, 48, 457-471.
[http://dx.doi.org/10.1016/j.jff.2018.07.037]
[60]
Bhattacharya, S.; Mondal, L.; Mukherjee, B.; Dutta, L.; Ehsan, I.; Debnath, M.C.; Gaonkar, R.H.; Pal, M.M.; Majumdar, S. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine (Lond.), 2018, 14(6), 1905-1917.
[http://dx.doi.org/10.1016/j.nano.2018.05.011] [PMID: 29802937]
[61]
Dai, J.; Van Wie, P.G.; Fai, L.Y.; Kim, D.; Wang, L.; Poyil, P.; Luo, J.; Zhang, Z. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells. Toxicol. Appl. Pharmacol., 2016, 311, 106-112.
[http://dx.doi.org/10.1016/j.taap.2016.09.016] [PMID: 27664007]
[62]
Patil, S.P.; Jain, P.D.; Sancheti, J.S.; Ghumatkar, P.J.; Tambe, R.; Sathaye, S. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology, 2014, 86, 192-202.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.012] [PMID: 25087727]
[63]
Kumar, K.S.; Sabu, V.; Sindhu, G.; Rauf, A.A.; Helen, A. Isolation, identification and characterization of apigenin from Justicia gendarussa and its anti-inflammatory activity. Int. Immunopharmacol., 2018, 59, 157-167.
[http://dx.doi.org/10.1016/j.intimp.2018.04.004] [PMID: 29655057]
[64]
Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett., 2018, 413, 11-22.
[http://dx.doi.org/10.1016/j.canlet.2017.10.041] [PMID: 29097249]
[65]
Zhang, S.; Sun, X.; Kong, R.; Xu, M. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt C), 1666-1670.
[http://dx.doi.org/10.1016/j.saa.2014.10.062] [PMID: 25459730]
[66]
Moss, G.P.; Smith, P.A.S.; Tavernier, D. Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC recommendations 1995). Pure Appl. Chem., 1995, 67, 1307.
[http://dx.doi.org/10.1351/pac199567081307]
[67]
Carbone, M.; Irace, C.; Costagliola, F.; Castelluccio, F.; Villani, G.; Calado, G.; Padula, V.; Cimino, G.; Lucas Cervera, J.; Santamaria, R.; Gavagnin, M. A new cytotoxic tambjamine alkaloid from the Azorean nudibranch Tambja ceutae. Bioorg. Med. Chem. Lett., 2010, 20(8), 2668-2670.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.020] [PMID: 20227875]
[68]
Aldrich, L.N.; Stoops, S.L.; Crews, B.C.; Marnett, L.J.; Lindsley, C.W. Total synthesis and biological evaluation of tambjamine K and a library of unnatural analogs. Bioorg. Med. Chem. Lett., 2010, 20(17), 5207-5211.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.154] [PMID: 20655217]
[69]
Burke, C.; Thomas, T.; Egan, S.; Kjelleberg, S. The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata. Environ. Microbiol., 2007, 9(3), 814-818.
[http://dx.doi.org/10.1111/j.1462-2920.2006.01177.x] [PMID: 17298379]
[70]
Franks, A.; Haywood, P.; Holmström, C.; Egan, S.; Kjelleberg, S.; Kumar, N. Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata. Molecules, 2005, 10(10), 1286-1291.
[http://dx.doi.org/10.3390/10101286] [PMID: 18007521]
[71]
Kojiri, K.; Nakajima, S.; Suzuki, H.; Okura, A.; Suda, H. A new antitumor substance, BE-18591, produced by a streptomycete. I. Fermentation, isolation, physico-chemical and biological properties. J. Antibiot. (Tokyo), 1993, 46(12), 1799-1803.
[http://dx.doi.org/10.7164/antibiotics.46.1799] [PMID: 8294236]
[72]
Kancharla, P.; Reynolds, K.A. Synthesis of 2,2′-Bipyrrole-5-carboxaldehydes and their application in the synthesis of B-ring functionalized prodiginines and tambjamines. Tetrahedron, 2013, 69, 8375-8385.
[http://dx.doi.org/10.1016/j.tet.2013.07.067]
[73]
Pinkerton, D.M.; Banwell, M.G.; Garson, M.J.; Kumar, N.; de Moraes, M.O.; Cavalcanti, B.C.; Barros, F.W.A.; Pessoa, C. Antimicrobial and cytotoxic activities of synthetically derived tambjamines C and E - J, BE-18591, and a related alkaloid from the marine bacterium Pseudoalteromonas tunicata. Chem. Biodivers., 2010, 7(5), 1311-1324.
[http://dx.doi.org/10.1002/cbdv.201000030] [PMID: 20491087]
[74]
Cavalcanti, B.C.; Júnior, H.V.N.; Seleghim, M.H.R.; Berlinck, R.G.S.; Cunha, G.M.A.; Moraes, M.O.; Pessoa, C. Cytotoxic and genotoxic effects of tambjamine D, an alkaloid isolated from the nudibranch Tambja eliora, on Chinese hamster lung fibroblasts. Chem. Biol. Interact., 2008, 174(3), 155-162.
[http://dx.doi.org/10.1016/j.cbi.2008.05.029] [PMID: 18573243]
[75]
Orsini, F.; Pellizoni, F.; McPhail, A.T.; Onan, K.D.; Wenkert, E. The Structure of Annonalide. Tetrahedron Lett., 1977, 18, 1085-1088.
[http://dx.doi.org/10.1016/S0040-4039(01)92837-0]
[76]
Strauch, M.A.; Tomaz, M.A.; Monteiro-Machado, M.; Ricardo, H.D.; Cons, B.L.; Fernandes, F.F.A.; El-Kik, C.Z.; Azevedo, M.S.; Melo, P.A. Antiophidic activity of the extract of the Amazon plant Humirianthera ampla and constituents. J. Ethnopharmacol., 2013, 145(1), 50-58.
[http://dx.doi.org/10.1016/j.jep.2012.10.033] [PMID: 23123799]
[77]
Brito, M.V.; Marques, R.A.; Mattos, M.C.; Alvarenga, M.E.; Valdo, A.K.S.M.; Oliveira, M.C.F.; Martins, F.T. Semisynthesis and absolute configuration of a novel rearranged 19,20-δ-lactone (9βH)-pimarane diterpene. Acta Crystallogr. C Struct. Chem., 2018, 74(Pt 8), 870-875.
[http://dx.doi.org/10.1107/S2053229618009452] [PMID: 30080159]
[78]
Chelladurai, P.K.; Ramalingam, R. Myristica Malabarica: A comprehensive review. J Pharmacogn Phytochem, 2017, 6, 255-258.
[79]
Son, S.W.; Choi, J.E.; Choi, N.H.; Ngoc, L.H.; Jang, K.S.; Lee, S.O.; Choi, G.J.; Choi, Y.H.; Kwon, H.R.; Kim, J-C. Nematicidal Activity of malabaricones isolated from myristica malabarica fruit rinds against bursaphelenchus xylophilus. Nematology, 2008, 10, 801-807.
[http://dx.doi.org/10.1163/156854108786161454]
[80]
Hee Choi, N.; Ja Choi, G.; Soo Jang, K.; Ho Choi, Y.; Og Lee, S.; Eul Choi, J.; Kim, J-C. Antifungal activity of the methanol extract of myristica malabarica fruit rinds and the active ingredients malabaricones against phytopathogenic fungi. Plant Pathol. J., 2008, 24.
[81]
Sen, R.; Bauri, A.K.; Chattopadhyay, S.; Chatterjee, M. Antipromastigote activity of the malabaricones of Myristica malabarica (rampatri). Phytother. Res., 2007, 21(6), 592-595.
[http://dx.doi.org/10.1002/ptr.2115] [PMID: 17335115]
[82]
Banerjee, D.; Bauri, A.K.; Guha, R.K.; Bandyopadhyay, S.K.; Chattopadhyay, S. Healing properties of malabaricone B and malabaricone C, against indomethacin-induced gastric ulceration and mechanism of action. Eur. J. Pharmacol., 2008, 578(2-3), 300-312.
[http://dx.doi.org/10.1016/j.ejphar.2007.09.041] [PMID: 17977527]
[83]
Maity, B.; Yadav, S.K.; Patro, B.S.; Tyagi, M.; Bandyopadhyay, S.K.; Chattopadhyay, S. Molecular mechanism of the anti-inflammatory activity of a natural diarylnonanoid, malabaricone C. Free Radic. Biol. Med., 2012, 52(9), 1680-1691.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.013] [PMID: 22343417]
[84]
Patro, B.S.; Tyagi, M.; Saha, J.; Chattopadhyay, S. Comparative nuclease and anti-cancer properties of the naturally occurring malabaricones. Bioorg. Med. Chem., 2010, 18(19), 7043-7051.
[http://dx.doi.org/10.1016/j.bmc.2010.08.011] [PMID: 20805034]
[85]
Modak, T.; Mukhopadhaya, A. Effects of citral, a naturally occurring antiadipogenic molecule, on an energy-intense diet model of obesity. Indian J. Pharmacol., 2011, 43(3), 300-305.
[http://dx.doi.org/10.4103/0253-7613.81515] [PMID: 21713095]
[86]
Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol., 2008, 19, 156-164.
[http://dx.doi.org/10.1016/j.tifs.2007.11.006]
[87]
Ortiz, M.I.; González-García, M.P.; Ponce-Monter, H.A.; Castañeda-Hernández, G.; Aguilar-Robles, P. Synergistic effect of the interaction between naproxen and citral on inflammation in rats. Phytomedicine, 2010, 18(1), 74-79.
[http://dx.doi.org/10.1016/j.phymed.2010.05.009] [PMID: 20637575]
[88]
Shi, C.; Song, K.; Zhang, X.; Sun, Y.; Sui, Y.; Chen, Y.; Jia, Z.; Sun, H.; Sun, Z.; Xia, X. Antimicrobial activity and possible mechanism of action of citral against cronobacter sakazakii. PLoS One, 2016, 11(7) e0159006
[http://dx.doi.org/10.1371/journal.pone.0159006] [PMID: 27415761]
[89]
Korenblum, E.; Regina de Vasconcelos Goulart, F.; de Almeida Rodrigues, I.; Abreu, F.; Lins, U.; Alves, P.B.; Blank, A.F.; Valoni, E.; Sebastián, G.V.; Alviano, D.S.; Alviano, C.S.; Seldin, L. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral. AMB Express, 2013, 3(1), 44.
[http://dx.doi.org/10.1186/2191-0855-3-44] [PMID: 23938023]
[90]
Li, Y.; Kong, W.; Li, M.; Liu, H.; Zhao, X.; Yang, S.; Yang, M. Litsea cubeba essential oil as the potential natural fumigant: Inhibition of aspergillus flavus and AFB1 production in licorice. Ind. Crops Prod., 2016, 80, 186-193.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.008]
[91]
Saddiq, A.A.; Khayyat, S.A. Chemical and antimicrobial studies of monoterpene: Citral. Pestic. Biochem. Physiol., 2010, 98, 89-93.
[http://dx.doi.org/10.1016/j.pestbp.2010.05.004]
[92]
Espina, L.; Berdejo, D.; Alfonso, P.; García-Gonzalo, D.; Pagán, R. Potential use of carvacrol and citral to inactivate biofilm cells and eliminate biofouling. Food Control, 2017, 82, 256-265.
[http://dx.doi.org/10.1016/j.foodcont.2017.07.007]
[93]
Bayala, B.; Bassole, I.H.N.; Maqdasy, S.; Baron, S.; Simpore, J.; Lobaccaro, J.A. Cymbopogon citratus and Cymbopogon giganteus essential oils have cytotoxic effects on tumor cell cultures. Identification of citral as a new putative anti-proliferative molecule. Biochimie, 2018, 153, 162-170.
[http://dx.doi.org/10.1016/j.biochi.2018.02.013] [PMID: 29501481]
[94]
Naz, F.; Khan, F.I.; Mohammad, T.; Khan, P.; Manzoor, S.; Hasan, G.M.; Lobb, K.A.; Luqman, S.; Islam, A.; Ahmad, F.; Hassan, M.I. Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression. Int. J. Biol. Macromol., 2018, 107(Pt B), 2580-2589.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.143] [PMID: 29079437]
[95]
Alam, M.F.; Varshney, S.; Khan, M.A.; Laskar, A.A.; Younus, H. In vitro DNA binding studies of therapeutic and prophylactic drug citral. Int. J. Biol. Macromol., 2018, 113, 300-308.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.098] [PMID: 29477540]
[96]
Song, M-J.; Bae, J.; Lee, D-S.; Kim, C-H.; Kim, J-S.; Kim, S-W.; Hong, S-I. Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. J. Biosci. Bioeng., 2006, 101(2), 157-161.
[http://dx.doi.org/10.1263/jbb.101.157] [PMID: 16569612]
[97]
Pérez-Tomás, R.; Montaner, B.; Llagostera, E.; Soto-Cerrato, V. The prodigiosins, proapoptotic drugs with anticancer properties. Biochem. Pharmacol., 2003, 66(8), 1447-1452.
[http://dx.doi.org/10.1016/S0006-2952(03)00496-9] [PMID: 14555220]
[98]
Ren, Y.; Gong, J.; Fu, R.; Li, Z.; Li, Q.; Zhang, J.; Yu, Z.; Cheng, X. Dyeing and antibacterial properties of cotton dyed with prodigiosins nanomicelles produced by microbial fermentation. Dyes Pigments, 2017, 138, 147-153.
[http://dx.doi.org/10.1016/j.dyepig.2016.11.043]
[99]
Tanaka, Y.; Yuasa, J.; Baba, M.; Tanikawa, T.; Nakagawa, Y.; Matsuyama, T. Temperature-dependent bacteriostatic activity of Serratia marcescens. Microbes Environ., 2004, 19, 236-240.
[http://dx.doi.org/10.1264/jsme2.19.236]
[100]
Aruldass, C.A.; Venil, C.K.; Zakaria, Z.A.; Ahmad, W.A. Brown sugar as a low-cost medium for the production of prodigiosin by locally isolated serratia marcescens UTM1. Int. Biodeterior. Biodegradation, 2014, 95, 19-24.
[http://dx.doi.org/10.1016/j.ibiod.2014.04.006]
[101]
Giri, A.V.; Anandkumar, N.; Muthukumaran, G.; Pennathur, G. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol., 2004, 4, 11.
[http://dx.doi.org/10.1186/1471-2180-4-11] [PMID: 15113456]
[102]
Williamson, N.R.; Fineran, P.C.; Gristwood, T.; Chawrai, S.R.; Leeper, F.J.; Salmond, G.P. Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol., 2007, 2(6), 605-618.
[http://dx.doi.org/10.2217/17460913.2.6.605] [PMID: 18041902]
[103]
John Jimtha, C.; Jishma, P.; Sreelekha, S.; Chithra, S.; Radhakrishnan, Ek. Antifungal Properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere, 2017, 3, 105-108.
[http://dx.doi.org/10.1016/j.rhisph.2017.02.003]
[104]
Francisco, R.; Pérez-Tomás, R.; Gimènez-Bonafé, P.; Soto-Cerrato, V.; Giménez-Xavier, P.; Ambrosio, S. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur. J. Pharmacol., 2007, 572(2-3), 111-119.
[http://dx.doi.org/10.1016/j.ejphar.2007.06.054] [PMID: 17678643]
[105]
Rastegari, B.; Karbalaei-Heidari, H.R.; Zeinali, S.; Sheardown, H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids Surf. B Biointerfaces, 2017, 158, 589-601.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.044] [PMID: 28750341]
[106]
Rastogi, S.; Marchal, E.; Uddin, I.; Groves, B.; Colpitts, J.; McFarland, S.A.; Davis, J.T.; Thompson, A. Synthetic prodigiosenes and the influence of C-ring substitution on DNA cleavage, transmembrane chloride transport and basicity. Org. Biomol. Chem., 2013, 11(23), 3834-3845.
[http://dx.doi.org/10.1039/c3ob40477c] [PMID: 23640568]
[107]
Da, X.; Nishiyama, Y.; Tie, D.; Hein, K.Z.; Yamamoto, O.; Morita, E. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Sci. Rep., 2019, 9(1), 1683.
[http://dx.doi.org/10.1038/s41598-019-38916-w] [PMID: 30737463]
[108]
Schrader, K.K. Plant natural compounds with antibacterial activity towards common pathogens of pond-cultured channel catfish (Ictalurus punctatus). Toxins (Basel), 2010, 2(7), 1676-1689.
[http://dx.doi.org/10.3390/toxins2071676] [PMID: 22069655]
[109]
Choi, E-J.; Lee, C-H.; Kim, Y-C.; Shin, O.S. Wogonin inhibits varicella-zoster (shingles) virus replication via modulation of type i interferon signaling and adenosine monophosphate-activated protein kinase activity. J. Funct. Foods, 2015, 17, 399-409.
[http://dx.doi.org/10.1016/j.jff.2015.05.031]
[110]
Chen, X.M.; Bai, Y.; Zhong, Y.J.; Xie, X.L.; Long, H.W.; Yang, Y.Y.; Wu, S.G.; Jia, Q.; Wang, X.H. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7α and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549. PLoS One, 2013, 8(11)e79201
[http://dx.doi.org/10.1371/journal.pone.0079201] [PMID: 24265759]
[111]
Ruibin, J.; Bo, J.; Danying, W.; Chihong, Z.; Jianguo, F.; Linhui, G. Therapy effects of wogonin on ovarian cancer cells. BioMed Res. Int., 2017, 20179381513
[http://dx.doi.org/10.1155/2017/9381513] [PMID: 29181409]
[112]
Peng, L-Y.; Yuan, M.; Wu, Z-M.; Song, K.; Zhang, C-L.; An, Q.; Xia, F.; Yu, J-L.; Yi, P-F.; Fu, B-D.; Shen, H-Q. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Sci. Rep., 2019, 9(1), 4063.
[http://dx.doi.org/10.1038/s41598-019-40684-6] [PMID: 30858423]
[113]
Tao, Y.; Zhan, S.; Wang, Y.; Zhou, G.; Liang, H.; Chen, X.; Shen, H. Baicalin, the major component of traditional Chinese medicine Scutellaria baicalensis induces colon cancer cell apoptosis through inhibition of oncomiRNAs. Sci. Rep., 2018, 8(1), 14477.
[http://dx.doi.org/10.1038/s41598-018-32734-2] [PMID: 30262902]
[114]
Chen, J.; Li, Z.; Chen, A.Y.; Ye, X.; Luo, H.; Rankin, G.O.; Chen, Y.C. Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int. J. Mol. Sci., 2013, 14(3), 6012-6025.
[http://dx.doi.org/10.3390/ijms14036012] [PMID: 23502466]
[115]
Morimoto, Y.; Baba, T.; Sasaki, T.; Hiramatsu, K. Apigenin as an anti-quinolone-resistance antibiotic. Int. J. Antimicrob. Agents, 2015, 46(6), 666-673.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.09.006] [PMID: 26526895]
[116]
Yoon, M-Y.; Cha, B.; Kim, J-C. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J., 2013, 29(1), 1-9.
[http://dx.doi.org/10.5423/PPJ.RW.05.2012.0072] [PMID: 25288923]
[117]
Shinohara, C.; Mori, S.; Ando, T.; Tsuji, T. Arg-gingipain inhibition and anti-bacterial activity selective for Porphyromonas gingivalis by malabaricone C. Biosci. Biotechnol. Biochem., 1999, 63(8), 1475-1477.
[http://dx.doi.org/10.1271/bbb.63.1475] [PMID: 10501006]
[118]
Manna, A.; Saha, P.; Sarkar, A.; Mukhopadhyay, D.; Bauri, A.K.; Kumar, D.; Das, P.; Chattopadhyay, S.; Chatterjee, M. Malabaricone-A induces a redox imbalance that mediates apoptosis in U937 cell line. PLoS One, 2012, 7(5)e36938
[http://dx.doi.org/10.1371/journal.pone.0036938] [PMID: 22590637]
[119]
Ghosh, K. Anticancer effect of lemongrass oil and citral on cervical cancer cell lines; Phcog. Commn, 2013, pp. 41-48.
[120]
Zielińska, A.; Martins-Gomes, C.; Ferreira, N.R.; Silva, A.M.; Nowak, I.; Souto, E.B. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int. J. Pharm., 2018, 553(1-2), 428-440.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.065] [PMID: 30385373]
[121]
Danevčič, T.; Borić Vezjak, M.; Tabor, M.; Zorec, M.; Stopar, D. Prodigiosin induces autolysins in actively grown bacillus subtilis cells. Front. Microbiol., 2016, 7, 27.
[http://dx.doi.org/10.3389/fmicb.2016.00027] [PMID: 26858704]
[122]
Lapenda, J.C.; Silva, P.A.; Vicalvi, M.C.; Sena, K.X.F.R.; Nascimento, S.C. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J. Microbiol. Biotechnol., 2015, 31(2), 399-406.
[http://dx.doi.org/10.1007/s11274-014-1793-y] [PMID: 25549906]
[123]
Isoldi, M.C.; Visconti, M.A.; Castrucci, A.M. de L. Anti-cancer drugs: molecular mechanisms of action. Mini Rev. Med. Chem., 2005, 5(7), 685-695.
[http://dx.doi.org/10.2174/1389557054368781] [PMID: 16026315]
[124]
Zitvogel, L.; Galluzzi, L.; Smyth, M.J.; Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity, 2013, 39(1), 74-88.
[http://dx.doi.org/10.1016/j.immuni.2013.06.014] [PMID: 23890065]
[125]
Siddik, Z.H. Mechanisms of action of cancer chemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs.The Cancer Handbook; Alison, M.R., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2005.
[http://dx.doi.org/10.1002/0470025077.chap84b]
[126]
McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc. Drugs Ther., 2017, 31(1), 63-75.
[http://dx.doi.org/10.1007/s10557-016-6711-0] [PMID: 28185035]
[127]
Szuławska, A.; Czyż, M. Molekularne mechanizmy działania antracyklin. Postepy Hig. Med. Dosw., 2006, 78-100.
[128]
Yang, F.; Teves, S.S.; Kemp, C.J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta, 2014, 1845(1), 84-89.
[PMID: 24361676]
[129]
Beretta, G.L.; Zunino, F. Molecular mechanisms of anthracycline activity. Top. Curr. Chem., 2008, 283, 1-19.
[PMID: 23605626]
[130]
Sartiano, G.P.; Lynch, W.E.; Bullington, W.D. Mechanism of action of the anthracycline anti-tumor antibiotics, doxorubicin, daunomycin and rubidazone: preferential inhibition of DNA polymerase alpha. J. Antibiot. (Tokyo), 1979, 32(10), 1038-1045.
[http://dx.doi.org/10.7164/antibiotics.32.1038] [PMID: 528363]
[131]
Kim, Y.; Ma, A-G.; Kitta, K.; Fitch, S.N.; Ikeda, T.; Ihara, Y.; Simon, A.R.; Evans, T.; Suzuki, Y.J. Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis. Mol. Pharmacol., 2003, 63(2), 368-377.
[http://dx.doi.org/10.1124/mol.63.2.368] [PMID: 12527808]
[132]
Bachur, N.R.; Yu, F.; Johnson, R.; Hickey, R.; Wu, Y.; Malkas, L. Helicase inhibition by anthracycline anticancer agents. Mol. Pharmacol., 1992, 41(6), 993-998.
[PMID: 1614415]
[133]
Drolet, M.; Wu, H.Y.; Liu, L.F. Roles of DNA topoisomerases in transcription. Adv. Pharmacol., 1994, 29A, 135-146.
[http://dx.doi.org/10.1016/S1054-3589(08)60543-8] [PMID: 7826855]
[134]
Nitiss, J.L. DNA topoisomerases in cancer chemotherapy: using enzymes to generate selective DNA damage. Curr. Opin. Investig. Drugs, 2002, 3(10), 1512-1516.
[PMID: 12431029]
[135]
Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 300-305.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[136]
Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res., 2016, 90-101.
[137]
Bryan-Marrugo, O.L.; Ramos-Jiménez, J.; Barrera-Saldaña, H.; Rojas-Martínez, A.; Vidaltamayo, R.; Rivas-Estilla, A.M. History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for hepatitis C. Med. Univ., 2015, 17, 165-174.
[http://dx.doi.org/10.1016/j.rmu.2015.05.003]
[138]
Morawska, K.; Popławski, T.; Ciesielski, W.; Smarzewska, S. Electrochemical and spectroscopic studies of the interaction of antiviral drug Tenofovir with single and double stranded DNA. Bioelectrochemistry, 2018, 123, 227-232.
[http://dx.doi.org/10.1016/j.bioelechem.2018.06.002] [PMID: 29894899]
[139]
Pugazhendhi, A.; Edison, T.N.J.I.; Velmurugan, B.K.; Jacob, J.A.; Karuppusamy, I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci., 2018, 200, 26-30.
[http://dx.doi.org/10.1016/j.lfs.2018.03.023] [PMID: 29534993]
[140]
Rheingold, S.R.; Neugut, A.I.; Meadows, A.T. Therapy-Related Secondary Cancers, 2003.
[141]
Pindur, U.; Jansen, M.; Lemster, T. Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology. Curr. Med. Chem., 2005, 12(24), 2805-2847.
[http://dx.doi.org/10.2174/092986705774454698] [PMID: 16305474]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy