Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Current Strategies and Future Perspective for the Effective Treatment of Diabetic Retinopathy

Author(s): Deep Shikha Sharma, Sachin Kumar Singh, Divya Thakur, Arya K.R, Rubiya Khursheed and Sheetu Wadhwa*

Volume 15, Issue 4, 2020

Page: [299 - 311] Pages: 13

DOI: 10.2174/1574885514666191007101007

Price: $65

conference banner
Abstract

Diabetes Retinopathy (DR) is one of the main complications due to diabetes. DR will damage the retinal capillaries and block them, which causes the loss of vision. Different drugs and therapies are used for the treatment and prevention of the DR. The most commonly used treatment is laser technology and combination therapy, along with some drugs. But these drugs possess side effects in the form of cataract, glaucoma, and complete blindness of the eye. The main strategy to overcome In DR, medicines with minimum side effects or maximum therapeutic effects are used. This article emphasizes the current strategy used for the treatment of DR with allopathic as well as herbal drugs.

Keywords: Diabetes, diabetic retinopathy, herbal drugs, laser therapy, vision, drug.

Graphical Abstract
[1]
IDF Diabetes Atlas . Available from https://www.idf.org/e-library/epidemiology-research/diabetes-atlas.html(Accessed on April 24, 2018).
[2]
Wilkinson CP, Ferris FL III, Klein RE, et al. Global Diabetic Retinopathy Project Group Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003; 110(9): 1677-82.
[http://dx.doi.org/10.1016/S0161-6420(03)00475-5] [PMID: 13129861]
[3]
Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1026-36.
[http://dx.doi.org/10.1016/j.bbadis.2017.01.016] [PMID: 28130199]
[4]
NIH National Eye Institute Facts about diabetic eye disease Available from https://nei.nih.gov/health/diabetic/(Accessed on 2015)
[5]
Kim JH, Kim JH, Kim KW, Kim MH, Yu YS. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 2009; 20(50)505101
[http://dx.doi.org/10.1088/0957-4484/20/50/505101] [PMID: 19923650]
[6]
Singh SR, Grossniklaus HE, Kang SJ, Edelhauser HF, Ambati BK, Kompella UB. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther 2009; 16(5): 645-59.
[http://dx.doi.org/10.1038/gt.2008.185] [PMID: 19194480]
[7]
Campbell M, Nguyen AT, Kiang AS, et al. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci USA 2009; 106(42): 17817-22.
[http://dx.doi.org/10.1073/pnas.0908561106] [PMID: 19822744]
[8]
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J 2010; 12(3): 348-60.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[9]
Sigurdsson HH, Konráethsdóttir F, Loftsson T, Stefánsson E. Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand 2007; 85(6): 598-602.
[http://dx.doi.org/10.1111/j.1600-0420.2007.00885.x] [PMID: 17645424]
[10]
Koevary SB. Pharmacokinetics of topical ocular drug delivery: potential uses for the treatment of diseases of the posterior segment and beyond. Curr Drug Metab 2003; 4(3): 213-22.
[http://dx.doi.org/10.2174/1389200033489488] [PMID: 12769666]
[11]
Inoue J, Oka M, Aoyama Y, et al. Effects of dorzolamide hydrochloride on ocular tissues. J Ocul Pharmacol Ther 2004; 20(1): 1-13.
[http://dx.doi.org/10.1089/108076804772745419] [PMID: 15006154]
[12]
Furrer E, Berdugo M, Stella C, et al. Pharmacokinetics and posterior segment biodistribution of ESBA105, an anti-TNF-α single-chain antibody, upon topical administration to the rabbit eye. Invest Ophthalmol Vis Sci 2009; 50(2): 771-8.
[http://dx.doi.org/10.1167/iovs.08-2370] [PMID: 18757508]
[13]
Tan CS, Gay EM, Ngo WK. Is age a risk factor for diabetic retinopathy? Br J Ophthalmol 2010; 94(9): 1268.
[http://dx.doi.org/10.1136/bjo.2009.169326] [PMID: 20813755]
[14]
Nadarajan B, Saya GK, Krishna RB, Lakshminarayanan S. Prevalence of diabetic retinopathy and its associated factors in a rural area of villupuram district of tamil nadu, India. J Clin Diagn Res 2017; 11(7): LC23-6.
[http://dx.doi.org/10.7860/JCDR/2017/20946.10294] [PMID: 28892938]
[15]
Gadkari SS, Maskati QB, Nayak BK. Prevalence of diabetic retinopathy in India: The All India Ophthalmological Society Diabetic Retinopathy Eye Screening Study 2014. Indian J Ophthalmol 2016; 64(1): 38-44.
[http://dx.doi.org/10.4103/0301-4738.178144] [PMID: 26953022]
[17]
Zhang C, Wu M, Wang J, Zhang M, Wang X, Liu W. Use of 5-fluorouracil-soaked bioamniotic membranes in trabeculectomy for primary open-angle glaucoma: a retrospective analysis. J Ophthalmol 2017; 20172698975
[http://dx.doi.org/10.1155/2017/2698975] [PMID: 28845303]
[18]
Bukhari DA, Alessa SK, Beheiri SI. Corneal epithelial hyper-plasia af-ter 5-fluorouracil injection. Case Rep Ophthalmol 2018; 9(1): 254-6.
[http://dx.doi.org/10.1159/000487474] [PMID: 30111992]
[19]
Parrozzani R, Frizziero L, Trainiti S, et al. Topical 1% 5-fluoruracil as a sole treatment of corneoconjunctival ocular surface squamous neoplasia: long-term study. Br J Ophthalmol 2017; 101(8): 1094-9.
[http://dx.doi.org/10.1136/bjophthalmol-2016-309219] [PMID: 27941046]
[20]
Wu Z, Li S, Wang N, Liu W, Liu W. A comparative study of the safety and efficacy effect of 5-fluorouracil or mitomycin C mounted biological delivery membranes in a rabbit model of glaucoma filtration surgery. Clin Ophthalmol 2013; 7: 655-62.
[http://dx.doi.org/10.2147/OPTH.S34200] [PMID: 23576864]
[21]
Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm 2002; 28(4): 353-69.
[http://dx.doi.org/10.1081/DDC-120002997] [PMID: 12056529]
[22]
Sharif Makhmal Zadeh B, Niro H, Rahim F, Esfahani G. Ocular delivery system for propranolol hydrochloride based on nanostructured lipid carrier. Sci Pharm 2018; 86(2): 16.
[http://dx.doi.org/10.3390/scipharm86020016] [PMID: 29677103]
[23]
Marashi A. Using anti VEGF in Diabetic retinopathy. Adv Ophthalmol Vis Syst 2016; 4(4): 1-5.
[24]
Papavasileiou E. Role of Anti-VEGF in Diabetic Macular Edema. J Endocrinol Diabetes 2015; 2(1): 1-4.
[25]
Susanne Althauser Diabetic eye disease-screening and treatment options. Available from: http://www.totalhealth. co.uk/clinical-experts/miss-susanne-althauser/diabetic(Accessed on August 24, 2014)
[26]
Elakkiya M, Selvaraj K, Kuppuswamy G. Current and Emerg-ing Therapies for the Management of Diabetic Retinopathy. J Appl Pharm Sci 2017; 7(09): 243-51.
[27]
Mendoza-Herrera K, Quezada AD, Pedroza-Tobías A. A Diabetic Retinopathy Screening Tool for Low-Income Adults in Mexico Prev Chronic Dis 2017; 14: E95.
[28]
Lewis AD, Hogg RE, Chandran M, et al. Prevalence of diabetic retinopathy and visual impairment in patients with diabetes mellitus in Zambia through the implementation of a mobile diabetic retinopathy screening project in the Copperbelt province: a cross-sectional study. Eye 2018; 32(7): 1201-8.
[http://dx.doi.org/10.1038/s41433-018-0055-x] [PMID: 29503450]
[29]
Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: a position statement by the american diabetes association. Diabetes Care 2017; 40(3): 412-8.
[http://dx.doi.org/10.2337/dc16-2641] [PMID: 28223445]
[30]
Kashim RM, Newton P, Ojo O. Diabetic Retinopathy Screening: A Systematic Review on Patients’ Non-Attendance. Int J Environ Res Public Health 2018; 15(1): 15.
[PMID: 29351207]
[31]
Li Y, Ryu C, Munie M, et al. Association of Metformin Treatment with Reduced Severity of Diabetic Retinopathy in Type 2 Diabetic Patients. J Diabetes Res 2018; 20182801450
[http://dx.doi.org/10.1155/2018/2801450] [PMID: 29854819]
[32]
Brazionis L, Jenkins A, Keech A, et al. CRE in Diabetic Retinopathy and the TEAMSnet Study Group. Diabetic retinopathy in a remote Indigenous primary healthcare population: a Central Australian diabetic retinopathy screening study in the Telehealth Eye and Associated Medical Services Network project. Diabet Med 2018; 35(5): 630-9.
[http://dx.doi.org/10.1111/dme.13596] [PMID: 29405370]
[33]
[34]
Altomare F, Kherani A, Lovshin J. Retinopathy. Can J Diabetes 2018; 42: S210-6.
[35]
Zhang DW, Fu M, Gao SH, Liu JL. Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med 2013; 2013636053
[http://dx.doi.org/10.1155/2013/636053] [PMID: 24348712]
[36]
Stewart EAS, Saker S, Amoaku WM. Dexamethasone reverses the effects of high glucose on human retinal endothelial cell permeability and proliferation in vitro. Exp Eye Res 2016; 151: 75-81.
[http://dx.doi.org/10.1016/j.exer.2016.08.005] [PMID: 27523466]
[37]
Powers M, Greven M, Kleinman R, et al. Recent advances in the management and understanding of di-abetic retinopathy. F1000 Res 2017; 6: 2063.
[38]
Servat OS, Hernández C, Simó R. Somatostatin and diabetic retinopathy: an evolving story Springer nature 2018; 60: 1-3.
[39]
Nawaz MI, Abouammoh M, Khan HA, Alhomida AS, Alfaran MF, Ola MS. Novel drugs and their targets in the potential treatment of diabetic retinopathy. Med Sci Monit 2013; 19: 300-8.
[http://dx.doi.org/10.12659/MSM.883895] [PMID: 23619778]
[40]
Kern TS, Engerman RL. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes 2001; 50(7): 1636-42.
[http://dx.doi.org/10.2337/diabetes.50.7.1636] [PMID: 11423486]
[41]
Stitt A, Gardiner TA, Alderson NL, et al. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 2002; 51(9): 2826-32.
[http://dx.doi.org/10.2337/diabetes.51.9.2826] [PMID: 12196477]
[42]
Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol 2008; 30(2): 65-84.
[http://dx.doi.org/10.1007/s00281-008-0111-x] [PMID: 18340447]
[43]
Sun W, Gerhardinger C, Dagher Z, Hoehn T, Lorenzi M. Aspirin at low-intermediate concentrations protects retinal vessels in experimental diabetic retinopathy through non-platelet-mediated effects. Diabetes 2005; 54(12): 3418-26.
[http://dx.doi.org/10.2337/diabetes.54.12.3418] [PMID: 16306357]
[44]
Thakur A, Scheinman RI, Rao VR, Kompella UB. Pazopanib, a multitargeted tyrosine kinase inhibitor, reduces diabetic retinal vascular leukostasis and leakage. Microvasc Res 2011; 82(3): 346-50.
[http://dx.doi.org/10.1016/j.mvr.2011.09.001] [PMID: 21945644]
[45]
Liu P, Zhao H, Luo Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis 2017; 8(6): 868-86.
[http://dx.doi.org/10.14336/AD.2017.0816] [PMID: 29344421]
[46]
Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, Abu El-Asrar AM. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complications 2012; 26(1): 56-64.
[http://dx.doi.org/10.1016/j.jdiacomp.2011.11.004] [PMID: 22226482]
[47]
Gao BB, Phipps JA, Bursell D, Clermont AC, Feener EP. Angiotensin AT1 receptor antagonism ameliorates murine retinal proteome changes induced by diabetes. J Proteome Res 2009; 8(12): 5541-9.
[http://dx.doi.org/10.1021/pr9006415] [PMID: 19845401]
[48]
Wu X, Kihara T, Hongo H, Akaike A, Niidome T, Sugimoto H. Angiotensin receptor type 1 antagonists protect against neuronal injury induced by oxygen-glucose depletion. Br J Pharmacol 2010; 161(1): 33-50.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00840.x] [PMID: 20718738]
[50]
Liu H, Kitazato KT, Uno M, et al. Protective mechanisms of the angiotensin II type 1 receptor blocker candesartan against cerebral ischemia: in-vivo and in-vitro studies. J Hypertens 2008; 26(7): 1435-45.
[http://dx.doi.org/10.1097/HJH.0b013e3283013b6e] [PMID: 18551021]
[51]
Chaturvedi N, Sjolie AK, Stephenson JM, et al. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Lancet 1998; 351(9095): 28-31.
[http://dx.doi.org/10.1016/S0140-6736(97)06209-0] [PMID: 9433426]
[52]
Mohamed Q, Wong TY. Emerging drugs for diabetic retinopathy. Expert Opin Emerg Drugs 2008; 13(4): 675-94.
[http://dx.doi.org/10.1517/14728210802584035] [PMID: 19046134]
[53]
Pérez-Torres I, Ruiz-Ramírez A, Baños G, El-Hafidi M. Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. Cardiovasc Hematol Agents Med Chem 2013; 11(1): 25-37.
[http://dx.doi.org/10.2174/1871525711311010006] [PMID: 22721439]
[54]
Aldebasi YH, Aly SM, Rahmani AH. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways. Int J Physiol Pathophysiol Pharmacol 2013; 5(4): 194-202.
[PMID: 24379904]
[55]
Kowluru RA, Kanwar M. Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab 2007; 4(8): 8.
[http://dx.doi.org/10.1186/1743-7075-4-8] [PMID: 17437639]
[56]
Deshpande J, Jeykodi S, Reddy GB, Reddy S, Juturu V. Soluble curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways-in vivo model. Adv Ophthal Vis Sys 2015; 3(1): 1-8.
[57]
Agarwal SS, Naqvi S, Gupta SK, Srivastava S. Prevention and management of diabetic retinopathy in STZ diabetic rats by Tinospora cordifolia and its molecular mechanisms. Food Chem Toxicol 2012; 3(50): 126-3132.
[58]
Behl T, Kotwani A. Chinese herbal drugs for the treatment of diabetic retinopathy. J Pharm Pharmacol 2017; 69(3): 223-35.
[http://dx.doi.org/10.1111/jphp.12683] [PMID: 28124440]
[59]
Zhang SL, Lax D, Li Y, Stejskal E, Lucas RV Jr, Einzig S. Anisodamine increases blood flow to the retina-choroid and protects retinal and pancreatic cells against lipid peroxidation. J Ethnopharmacol 1990; 30(2): 121-34.
[http://dx.doi.org/10.1016/0378-8741(90)90001-A] [PMID: 2123954]
[60]
Gillies MC, McAllister IL, Zhu M, et al. Intravitreal triamcinolone prior to laser treatment of diabetic macular edema: 24-month results of a randomized controlled trial. Ophthalmology 2011; 118(5): 866-72.
[http://dx.doi.org/10.1016/j.ophtha.2010.09.029] [PMID: 21232801]
[61]
Paccola L, Costa RA, Folgosa MS, Barbosa JC, Scott IU, Jorge R. Intravitreal triamcinolone versus bevacizumab for treatment of refractory diabetic macular oedema (IBEME study). Br J Ophthalmol 2008; 92(1): 76-80.
[http://dx.doi.org/10.1136/bjo.2007.129122] [PMID: 17965109]
[62]
Shimura M, Nakazawa T, Yasuda K, et al. Comparative therapy evaluation of intravitreal bevacizumab and triamcinolone acetonide on persistent diffuse diabetic macular edema. Am J Ophthalmol 2008; 145(5): 854-61.
[http://dx.doi.org/10.1016/j.ajo.2007.12.031] [PMID: 18328456]
[63]
Huang YH, Yeh PT, Chen MS, Yang CH, Yang CM. Intravitreal bevacizumab and panretinal photocoagulation for proliferative diabetic retinopathy associated with vitreous hemorrhage. Retina 2009; 29(8): 1134-40.
[http://dx.doi.org/10.1097/IAE.0b013e3181b094b7] [PMID: 19672218]
[64]
Cho WB, Oh SB, Moon JW, Kim HC. Panretinal photocoagulation combined with intravitreal bevacizumab in high-risk proliferative diabetic retinopathy. Retina 2009; 29(4): 516-22.
[http://dx.doi.org/10.1097/IAE.0b013e31819a5fc2] [PMID: 19262436]
[65]
Clinical trials. Gov. Laser therapy combined with intravitreal aflibercept Vs intravitreal aflibercept monotherapy (LADAMO). Available from: https://clinicaltrials.gov/ct2/show/NCT02432547(Accessed on June 2, 2015)
[66]
Brown DM, Kaiser PK, Michels M, et al. ANCHOR Study Group. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 2006; 355(14): 1432-44.
[http://dx.doi.org/10.1056/NEJMoa062655] [PMID: 17021319]
[67]
Shende PK, Godbole R. Current and novel techniques in the ophthalmic drug delivery systems. Int J Pharm Sci Res 2016; 7: 3557-66.
[68]
Abrishami M, Zarei-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 2009; 29(5): 699-703.
[http://dx.doi.org/10.1097/IAE.0b013e3181a2f42a] [PMID: 19430280]
[69]
Kaiser JM, Imai H, Haakenson JK, et al. Nanoliposomal minocycline for ocular drug delivery. Nanomedicine 2013; 9(1): 130-40.
[http://dx.doi.org/10.1016/j.nano.2012.03.004] [PMID: 22465498]
[70]
Attia Shafie MA, Mohammed Fayek HH. Formulation and evaluation of betamethsone sodium phosphate loaded nano-particles for ophthalmic delivery. J Clin Exp Ophthalmol 2013; 4: 273.
[71]
Mehra GR, Mathur M, Saroot R, et al. Enhancement of miotic poten-tial of pilocarpine by tamarind gum based in-situ gelling ocular dosage form. Acta Pharm Sciencia 2010; 52: 145-54.
[72]
Lu Y, Zhou N, Huang X, et al. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int J Ophthalmol 2014; 7(1): 1-7.
[PMID: 24634856]
[73]
Li J, Guo X, Liu Z, et al. Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharma-cokinetics, cytotoxicity and cellular uptake studies. Drug Dev Ind Pharm 2014; 40: 980-7.
[74]
Fangueiro JF, Andreani T, Fernandes L, et al. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf B Biointerfaces 2014; 123: 452-60.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.042] [PMID: 25303852]
[75]
Araújo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm 2010; 393(1-2): 167-75.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.034] [PMID: 20362042]
[76]
Liu R, Liu Z, Zhang C, Zhang B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J Pharm Sci 2012; 101(10): 3833-44.
[http://dx.doi.org/10.1002/jps.23251] [PMID: 22767401]
[77]
Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 2005; 102(1): 23-38.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.015] [PMID: 15653131]
[78]
Yavuz B, Pehlivan SB, Vural İ, Ünlü N. In Vitro/In Vivo eval-uation of dexamethasone PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci 2015; 104(11): 3814-23.
[http://dx.doi.org/10.1002/jps.24588] [PMID: 26227825]
[79]
Kambhampati SP, Clunies-Ross AJM, Bhutto I, et al. Systemic and intravitreal delivery of dendrimers to activated microglia/macrophage in ischemia/reperfusion mouse retina. Invest Ophthalmol Vis Sci 2015; 56(8): 4413-24.
[http://dx.doi.org/10.1167/iovs.14-16250] [PMID: 26193917]
[80]
Kannan RM, Kannan S, Romero R. Inventors Dendrimer-based therapeutic nanodevices for ther-apeutic and imaging applications Patent US10/38068 2010.
[81]
Selvaraj K, Kuppusamy G, Krishnamurthy J, Mahalingam R, Singh SK, Gulati M. Repositioning of itraconazole for the management of ocular neovascularization through surface-modified nanostructured lipid carriers. Assay Drug Dev Technol 2019; 17(4): 178-90.
[http://dx.doi.org/10.1089/adt.2018.898] [PMID: 30835139]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy