Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Identification of Antibacterial Molecule(s) from Animals Living in Polluted Environments

Author(s): Foo Y.M. Winnie, Ruqaiyyah Siddiqui, Kuppusamy Sagathevan and Naveed A. Khan*

Volume 21, Issue 5, 2020

Page: [425 - 437] Pages: 13

DOI: 10.2174/1389201020666191002153435

Price: $65

conference banner
Abstract

Background: Snakes feed on germ-infested rodents, while water monitor lizards thrive on rotten matter in unhygienic conditions. We hypothesize that such creatures survive the assault of superbugs and are able to fend off disease by producing antimicrobial substances. In this study, we investigated the potential antibacterial activity of sera/lysates of animals living in polluted environments.

Methods: Snake (Reticulatus malayanus), rats (Rattus rattus), water monitor lizard (Varanus salvator), frog (Lithobates catesbeianus), fish (Oreochromis mossambicus), chicken (Gallus gallus domesticus), and pigeon (Columba livia) were dissected and their organ lysates/sera were collected. Crude extracts were tested for bactericidal effects against neuropathogenic E. coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus cereus and Klebsiella pneumoniae. To determine whether lysates/sera protect human cells against bacterialmediated damage, cytotoxicity assays were performed by measuring lactate dehydrogenase release as an indicator of cell death. Lysates/sera were partially characterized using heat-treatment and pronasetreatment and peptide sequences were determined using the Liquid Chromatography Mass Spectrometry (LC-MS).

Results: Snake and water monitor lizard sera exhibited potent broad-spectrum bactericidal effects against all bacteria tested. Heat inactivation and pronase-treatment inhibited bactericidal effects indicating that activity is heat-labile and pronase-sensitive suggesting that active molecules are proteinaceous in nature. LCMS analyses revealed the molecular identities of peptides.

Conclusion: The results revealed that python that feeds on germ-infested rodents and water monitor lizards that feed on rotten organic waste possess antibacterial activity in a heat-sensitive manner and several peptides were identified. We hope that the discovery of antibacterial activity in the sera of animals living in polluted environments will stimulate research in finding antibacterial agents from unusual sources as this has the potential for the development of novel strategies in the control of infectious diseases.

Keywords: Antibacterial activity, human cells, polluted environment, cytotoxicity, MRSA, E. coli.

Graphical Abstract
[1]
Alves, R.R.; Alves, H.N. The faunal drugstore: animal-based remedies used in traditional medicines in Latin America. J. Ethnobiol. Ethnomed., 2011, 7, 9.
[http://dx.doi.org/10.1186/1746-4269-7-9] [PMID: 21385357]
[2]
Alves, R.R.; Pereira Filho, G.A.; Lima, Y.C. Snakes used in ethno medicine in north east Brazil environment. Developm. Sustainability, 2007, 9, 455-464.
[http://dx.doi.org/10.1007/s10668-006-9031-x]
[3]
Mahawar, M.M.; Jaroli, D.P. Traditional zootherapeutic studies in India: a review. J. Ethnobiol. Ethnomed., 2008, 4, 17.
[http://dx.doi.org/10.1186/1746-4269-4-17] [PMID: 18634551]
[4]
Mahawar, M.M.; Jaroli, D.P. Traditional knowledge on zootherapeutic uses by the Saharia tribe of Rajasthan, India. J. Ethnobiol. Ethnomed., 2007, 3, 25.
[http://dx.doi.org/10.1186/1746-4269-3-25] [PMID: 17547781]
[5]
Chakravorty, J.; Meyer-Rochow, V.B.; Ghosh, S. Vertebrates used for medicinal purposes by members of the Nyishi and Galo tribes in Arunachal Pradesh (North-East India). J. Ethnobiol. Ethnomed., 2011, 7, 13.
[http://dx.doi.org/10.1186/1746-4269-7-13] [PMID: 21453496]
[6]
Akbar, N.; Siddiqui, R.; Iqbal, M.; Sagathevan, K.; Khan, N.A. Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Lett. Appl. Microbiol., 2018, 66(5), 416-426.
[http://dx.doi.org/10.1111/lam.12867] [PMID: 29457249]
[7]
Ali, S.M.; Siddiqui, R.; Ong, S.K.; Shah, M.R.; Anwar, A.; Heard, P.J.; Khan, N.A. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana). Appl. Microbiol. Biotechnol., 2017, 101(1), 253-286.
[http://dx.doi.org/10.1007/s00253-016-7872-2] [PMID: 27743045]
[8]
Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; Mathers, C.; Black, R.E. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet, 2012, 379(9832), 2151-2161.
[http://dx.doi.org/10.1016/S0140-6736(12)60560-1] [PMID: 22579125]
[9]
Iqbal, J.; Siddiqui, R.; Kazmi, S.U.; Khan, N.A. A simple assay to screen antimicrobial compounds potentiating the activity of current antibiotics. BioMed Res. Int., 2013, 2013927323
[http://dx.doi.org/10.1155/2013/927323] [PMID: 23865073]
[10]
Bryce, J.; Boschi-Pinto, C.; Shibuya, K.; Black, R.E. WHO estimates of the causes of death in children. Lancet, 2005, 365(9465), 1147-1152.
[http://dx.doi.org/10.1016/S0140-6736(05)71877-8] [PMID: 15794969]
[11]
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem., 2009, 78, 119-146.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[12]
Arias, C.A.; Murray, B.E. Antibiotic-resistant bugs in the 21st century--a clinical super-challenge. N. Engl. J. Med., 2009, 360(5), 439-443.
[http://dx.doi.org/10.1056/NEJMp0804651] [PMID: 19179312]
[13]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[14]
Butler, M.S. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25(3), 475-516.
[http://dx.doi.org/10.1039/b514294f] [PMID: 18497896]
[15]
Murphy, J.C.; Henderson, R.W. Tales of giant snakes: A historical natural history of anacondas and pythons; Krieger Publishing Company: Florida, 1997.
[16]
Shine, R.; Harlow, P.S.; Keogh, J.S. Commercial harvesting of giant lizards: the biology of water monitors Varanus salvator in southern Sumatra. Biol. Conserv., 1996, 77, 125-134.
[http://dx.doi.org/10.1016/0006-3207(96)00008-0]
[17]
Sagheer, M.; Siddiqui, R.; Iqbal, J.; Khan, N.A. Black cobra (Naja naja karachiensis) lysates exhibit broad-spectrum antimicrobial activities. Pathog. Glob. Health, 2014, 108(3), 129-136.
[http://dx.doi.org/10.1179/2047773214Y.0000000132] [PMID: 24625321]
[18]
Siddiqui, R.; Jeyamogan, S.; Ali, S.M.; Abbas, F.; Sagathevan, K.A.; Khan, N.A. Crocodiles and alligators: Antiamoebic and antitumor compounds of crocodiles. Exp. Parasitol., 2017, 183, 194-200.
[http://dx.doi.org/10.1016/j.exppara.2017.09.008] [PMID: 28917711]
[19]
Bush, M.; Smeller, J. Blood collection & injection techniques in snakes. Vet. Med. Small Anim. Clin., 1978, 73(2), 211-214.
[PMID: 245912]
[20]
Jenkins-Perez J Vet Tech E1-E8 > 2012.Hematologic evaluation of reptiles: A diagnostic mainstay, Available from:. http://vetfolio-vetstreet.s3.amazonaws.com/4b/bb3de0cf6e11e19ddf005056ad4734/file/VT0812_Jenkins-Perez_CE.pdf
[21]
Khan, N.A.; Osman, K.; Goldsworthy, G.J. Lysates of Locusta migratoria brain exhibit potent broad-spectrum antibacterial activity. J. Antimicrob. Chemother., 2008, 62(3), 634-635.
[http://dx.doi.org/10.1093/jac/dkn239] [PMID: 18552339]
[22]
Iqbal, J.; Siddiqui, R.; Khan, N.A. Acanthamoeba and bacteria produce antimicrobials to target their counterpart. Parasit. Vectors, 2014, 7, 56.
[http://dx.doi.org/10.1186/1756-3305-7-56] [PMID: 24479709]
[23]
Merchant, M.; Thibodeaux, D.; Loubser, K.; Elsey, R.M. Amoebacidal effects of serum from the American alligator (Alligator mississippiensis). J. Parasitol., 2004, 90(6), 1480-1483.
[http://dx.doi.org/10.1645/GE-3382] [PMID: 15715248]
[24]
Merchant, M.E.; Leger, N.; Jerkins, E.; Mills, K.; Pallansch, M.B.; Paulman, R.L.; Ptak, R.G. Broad spectrum antimicrobial activity of leukocyte extracts from the American alligator (Alligator mississippiensis). Vet. Immunol. Immunopathol., 2006, 110(3-4), 221-228.
[http://dx.doi.org/10.1016/j.vetimm.2005.10.001] [PMID: 16298430]
[25]
Merchant, M.; Henry, D.; Falconi, R.; Muscher, B.; Bryja, J. Antibacterial activities of serum from the Komodo Dragon (Varanus komodoensis). Microbiol. Res., 2013, 4
[http://dx.doi.org/10.4081/mr.2013.e4]
[26]
Pluschke, G.; Mayden, J.; Achtman, M.; Levine, R.P. Role of the capsule and the O antigen in resistance of O18:K1 Escherichia coli to complement-mediated killing. Infect. Immun., 1983, 42(3), 907-913.
[PMID: 6196296]
[27]
Dahl, T.A.; Midden, W.R.; Hartman, P.E. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. J. Bacteriol., 1989, 171(4), 2188-2194.
[http://dx.doi.org/10.1128/jb.171.4.2188-2194.1989]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy