Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Mannitol Reduces Spinal Cord Edema in Rats with Acute Traumatic Spinal Cord Injury

Author(s): Chao Zhang, Anming Hu, Yingli Jing, Degang Yang* and Jianjun Li*

Volume 17, Issue 6, 2020

Page: [676 - 683] Pages: 8

DOI: 10.2174/1570180816666190731112158

conference banner
Abstract

Background: The research about anti-edema effects of mannitol on acute traumatic spinal cord injury (SCI) in rats is rare.

Objective: This study aimed to explore the effect of mannitol on spinal cord edema after SCI in rats.

Methods: Seventy-eight adult female rats were assigned to three groups randomly: a sham control group (n = 18), a contusion and normal saline contrast group (n=30), and a contusion and mannitol treatment group (n=30). We used the open-field test to estimate the functional recovery of rats weekly. Spinal cord water content was measured to determine the spinal cord edema. The ultrastructure features of the injured dorsolateral spinal cord were determined on the 7th day after SCI by HE staining.

Results: The mannitol group had greatly improved Basso-Beattie-Bresnahan (BBB) scores when compared with the saline contrast group. The spinal cord water content was increased significantly after SCI, and there was no significant difference in the water content between the NaCl and mannitol groups 1 day after SCI. The water content at 3 and 7 days after SCI was significantly lower in the mannitol group than in the NaCl group (p < 0.05). Mannitol can reduce spinal cord edema by increasing the number of red blood cells in the injured spinal cord and decrease the ratio (dorsoventral diameter/ mediolateral diameter) of spinal cord 7 days post-SCI.

Conclusion: Mannitol increases recovery of motor function in rats, reduces spinal cord edema and increases the number of red blood cells in the injured spinal cord, decreasing the ratio of spinal cord to reduce pressure.

Keywords: Mannitol, edema, spinal cord injury, rats, motor function, water content.

Graphical Abstract
[1]
Wang, H.; Liu, X.; Zhao, Y.; Ou, L.; Zhou, Y.; Li, C.; Liu, J.; Chen, Y.; Yu, H.; Wang, Q.; Han, J.; Xiang, L. Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years: An observational study. Medicine (Baltimore), 2016, 95(43)e5220
[http://dx.doi.org/10.1097/MD.0000000000005220] [PMID: 27787384]
[2]
Jain, N.B.; Ayers, G.D.; Peterson, E.N.; Harris, M.B.; Morse, L.; O’Connor, K.C.; Garshick, E. Traumatic spinal cord injury in the United States, 1993-2012. JAMA, 2015, 313(22), 2236-2243.
[http://dx.doi.org/10.1001/jama.2015.6250] [PMID: 26057284]
[3]
Borgens, R.B.; Liu-Snyder, P. Understanding secondary injury. Q. Rev. Biol., 2012, 87(2), 89-127.
[http://dx.doi.org/10.1086/665457] [PMID: 22696939]
[4]
Sharma, H.S.; Badgaiyan, R.D.; Alm, P.; Mohanty, S.; Wiklund, L. Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injury-induced pathophysiology and motor functions: an experimental study in the rat. Ann. N. Y. Acad. Sci., 2005, 1053, 422-434.
[http://dx.doi.org/10.1196/annals.1344.037] [PMID: 16179549]
[5]
Flanders, A.E.; Spettell, C.M.; Friedman, D.P.; Marino, R.J.; Herbison, G.J. The relationship between the functional abilities of patients with cervical spinal cord injury and the severity of damage revealed by MR imaging. AJNR Am. J. Neuroradiol., 1999, 20(5), 926-934.
[PMID: 10369368]
[6]
Yang, Y.B.; Piao, Y.J. Effects of resveratrol on secondary damages after acute spinal cord injury in rats. Acta Pharmacol. Sin., 2003, 24(7), 703-710.
[PMID: 12852839]
[7]
Kjell, J.; Olson, L. Rat models of spinal cord injury: from pathology to potential therapies. Dis. Model. Mech., 2016, 9(10), 1125-1137.
[http://dx.doi.org/10.1242/dmm.025833] [PMID: 27736748]
[8]
Rapoport, S.I. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell. Mol. Neurobiol., 2000, 20(2), 217-230.
[http://dx.doi.org/10.1023/A:1007049806660] [PMID: 10696511]
[9]
Seyfried, D.M.; Han, Y.; Yang, D.; Ding, J.; Savant-Bhonsale, S.; Shukairy, M.S.; Chopp, M. Mannitol enhances delivery of marrow stromal cells to the brain after experimental intracerebral hemorrhage. Brain Res., 2008, 1224, 12-19.
[http://dx.doi.org/10.1016/j.brainres.2008.05.080] [PMID: 18573239]
[10]
Gonzales-Portillo, G.S.; Sanberg, P.R.; Franzblau, M.; Gonzales-Portillo, C.; Diamandis, T.; Staples, M.; Sanberg, C.D.; Borlongan, C.V. Mannitol-enhanced delivery of stem cells and their growth factors across the blood-brain barrier. Cell Transplant., 2014, 23(4-5), 531-539.
[http://dx.doi.org/10.3727/096368914X678337] [PMID: 24480552]
[11]
Liu, C.; Yang, D.; Li, J.; Li, D.; Yang, M.; Sun, W.; Meng, Q.; Zhang, W.; Cai, C.; Du, L.; Li, J.; Gao, F.; Gu, R.; Feng, Y.; Dong, X.; Miao, Q.; Yang, X.; Zuo, Z. Dynamic diffusion tensor imaging of spinal cord contusion: A canine model. J. Neurol. Res., 2008, 00, 1-11.
[12]
Gruner, J.A. A monitored contusion model of spinal cord injury in the rat. J. Neurotrauma, 1992, 9(2), 123-126.
[http://dx.doi.org/10.1089/neu.1992.9.123] [PMID: 1404425]
[13]
Hu, A.M.; Li, J.J.; Sun, W.; Yang, D.G.; Yang, M.L.; Du, L.J.; Gu, R.; Gao, F.; Li, J.; Chu, H.Y.; Zhang, X.; Gao, L.J. Myelotomy reduces spinal cord edema and inhibits aquaporin-4 and aquaporin-9 expression in rats with spinal cord injury. Spinal Cord, 2015, 53(2), 98-102.
[http://dx.doi.org/10.1038/sc.2014.209] [PMID: 25448191]
[14]
Saadoun, S.; Bell, B.A.; Verkman, A.S.; Papadopoulos, M.C. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain, 2008, 131(Pt 4), 1087-1098.
[http://dx.doi.org/10.1093/brain/awn014] [PMID: 18267965]
[15]
Baysefer, A.; Erdogan, E.; Kahraman, S.; Izci, Y.; Korkmaz, C.; Solmaz, I.; Ulas, U.H.; Ozogul, C.; Timurkaynak, E. Effect of mannitol in experimental spinal cord injury: an ultrastructural and electrophysiological study. Neurol. India, 2003, 51(3), 350-354.
[PMID: 14652436]
[16]
Samantaray, S.; Sribnick, E.A.; Das, A.; Knaryan, V.H.; Matzelle, D.D.; Yallapragada, A.V.; Reiter, R.J.; Ray, S.K.; Banik, N.L. Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J. Pineal Res., 2008, 44(4), 348-357.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00534.x] [PMID: 18086148]
[17]
Sedý, J.; Urdzíková, L.; Jendelová, P.; Syková, E. Methods for behavioral testing of spinal cord injured rats. Neurosci. Biobehav. Rev., 2008, 32(3), 550-580.
[http://dx.doi.org/10.1016/j.neubiorev.2007.10.001] [PMID: 18036661]
[18]
Rowland, J.W.; Hawryluk, G.W.J.; Kwon, B.; Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg. Focus, 2008, 25(5)E2
[http://dx.doi.org/10.3171/FOC.2008.25.11.E2] [PMID: 18980476]
[19]
Tator, C.H.; Fehlings, M.G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg., 1991, 75(1), 15-26.
[http://dx.doi.org/10.3171/jns.1991.75.1.0015] [PMID: 2045903]
[20]
Shepard, M.J.; Bracken, M.B. Magnetic resonance imaging and neurological recovery in acute spinal cord injury: observations from the National Acute Spinal Cord Injury Study 3. Spinal Cord, 1999, 37(12), 833-837.
[http://dx.doi.org/10.1038/sj.sc.3100927] [PMID: 10602525]
[21]
Park, K.; Lee, Y.; Park, S.; Lee, S.; Hong, Y.; Kil Lee, S.; Hong, Y. Synergistic effect of melatonin on exercise-induced neuronal reconstruction and functional recovery in a spinal cord injury animal model. J. Pineal Res., 2010, 48(3), 270-281.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00751.x] [PMID: 20210855]
[22]
McGraw, C.P.; Howard, G. Effect of mannitol on increased intracranial pressure. Neurosurgery, 1983, 13(3), 269-271.
[http://dx.doi.org/10.1227/00006123-198309000-00009] [PMID: 6413884]
[23]
Ikeda, M.; Bhattacharjee, A.K.; Kondoh, T.; Nagashima, T.; Tamaki, N. Synergistic effect of cold mannitol and Na(+)/Ca(2+) exchange blocker on blood-brain barrier opening. Biochem. Biophys. Res. Commun., 2002, 291(3), 669-674.
[http://dx.doi.org/10.1006/bbrc.2002.6495] [PMID: 11855842]
[24]
Schwarz, S.; Schwab, S.; Bertram, M.; Aschoff, A.; Hacke, W. Effects of hypertonic saline hydroxyethyl starch solution and mannitol in patients with increased intracranial pressure after stroke. Stroke, 1998, 29(8), 1550-1555.
[http://dx.doi.org/10.1161/01.STR.29.8.1550] [PMID: 9707191]
[25]
Machi, T.; Kassell, N.F.; Scheld, M.W.; Lehmann, G.A. Effect of mannitol on the permeability of cultured endothelial cells. Fukuoka Igaku Zasshi, 1996, 87(8), 178-183.
[PMID: 8831182]
[26]
Burke, A.M.; Quest, D.O.; Chien, S.; Cerri, C. The effects of mannitol on blood viscosity. J. Neurosurg., 1981, 55(4), 550-553.
[http://dx.doi.org/10.3171/jns.1981.55.4.0550] [PMID: 6792325]
[27]
Wakai, A.; Roberts, I.; Schierhout, G. Mannitol for acute traumatic brain injury. Cochrane Database Syst. Rev., 2005, (4)CD001049
[PMID: 16235278]
[28]
Basso, D.M.; Beattie, M.S.; Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol., 1996, 139(2), 244-256.
[http://dx.doi.org/10.1006/exnr.1996.0098] [PMID: 8654527]

© 2024 Bentham Science Publishers | Privacy Policy