Image Fusion Based on Estimation Theory: Applied to PET/CT for Radiotherapy

ISSN: 1877-6132 (Online)
ISSN: 2210-6847 (Print)


Volume 4, 2 Issues, 2014


Download PDF Flyer




Recent Patents on Medical Imaging

Aims & ScopeAbstracted/Indexed in


Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Charles Bellows
Chief Division of General Surgery
University of New Mexico
New Mexico
USA
Email: cbellows@salud.unm.edu

View Full Editorial Board

Subscribe Purchase Articles Order Reprints


Image Fusion Based on Estimation Theory: Applied to PET/CT for Radiotherapy

Author(s): Jinzhong Yang, Rick S. Blum, Peter Balter and Laurence E. Court

Affiliation: Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.

Abstract

This paper reviewed three state-of-the-art image fusion methods that were developed based on the estimation theory and evaluated these methods in the fusion of PET/CT images for radiotherapy applications. These fusion methods were developed in a framework of maximum likelihood estimate and firstly introduced the expectation-maximization algorithm to image fusion in either pixel-level or feature-level. Some recent patents on similar image fusion approaches have been discussed. The estimation theory based methods were previously evaluated for the fusion of visual and infrared images, however, they have not been tested for fusion of medical images such as PET/CT images. In this study we demonstrated through experiments the potential applicability of the pixel-level fusion and region-level fusion approaches based on the EM algorithm for PET and CT image fusion. We have showed that the fused image might be useful for tumor target delineation and image-guided radiotherapy.


Purchase Online Order Reprints Order Eprints Rights and Permissions

  
  



Article Details

Volume: 4
First Page: 1
Last Page: 10
Page Count: 10
DOI: 10.2174/2210684704666140524004501
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science