An Overview of Data Mining Algorithms in Drug Induced Toxicity Prediction

ISSN: 1875-5607 (Online)
ISSN: 1389-5575 (Print)


Volume 14, 14 Issues, 2014


Download PDF Flyer




Mini-Reviews in Medicinal Chemistry

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 15th of 58 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 3.186
5 - Year: 2.845

An Overview of Data Mining Algorithms in Drug Induced Toxicity Prediction

Author(s): Ankur Omer, Poonam Singh, N.K. Yadav and R.K. Singh

Affiliation: Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India.

Abstract

The growth in chemical diversity has increased the need to adjudicate the toxicity of different chemical compounds raising the burden on the demand of animal testing. The toxicity evaluation requires time consuming and expensive undertaking, leading to the deprivation of the methods employed for screening chemicals pointing towards the need to develop more efficient toxicity assessment systems. Computational approaches have reduced the time as well as the cost for evaluating the toxicity and kinetic behavior of any chemical. The accessibility of a large amount of data and the intense need of turning this data into useful information have attracted the attention towards data mining. Machine Learning, one of the powerful data mining techniques has evolved as the most effective and potent tool for exploring new insights on combinatorial relationships among various experimental data generated. The article accounts on some sophisticated machine learning algorithms like Artificial Neural Networks (ANN), Support Vector Machine (SVM), k-mean clustering and Self Organizing Maps (SOM) with some of the available tools used for classification, sorting and toxicological evaluation of data, clarifying, how data mining and machine learning interact cooperatively to facilitate knowledge discovery. Addressing the association of some commonly used expert systems, we briefly outline some real world applications to consider the crucial role of data set partitioning.

Keywords: Bioinformatics, computational prediction, data mining, in silico, machine learning, toxicity prediction.

Purchase Online Rights and Permissions

  
  



Article Details

Volume: 14
Issue Number: 4
First Page: 345
Last Page: 354
Page Count: 10
DOI: 10.2174/1389557514666140219110244
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science