Mechanisms of Fibrinogen Adsorption at Solid Substrates

ISSN: 1873-5294 (Online)
ISSN: 1568-0266 (Print)

Volume 17, 32 Issues, 2017

Download PDF Flyer

Current Topics in Medicinal Chemistry

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 21st of 59 in Chemistry, Medicinal

Allen B. Reitz
Fox Chase Chemical Diversity Center, Inc.
Doylestown, PA

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.9
5 - Year: 2.998

Mechanisms of Fibrinogen Adsorption at Solid Substrates

Current Topics in Medicinal Chemistry, 14(6): 702-729.

Author(s): Zbigniew Adamczyk, Anna Bratek-Skicki, Paulina Zeliszewska and Monika Wasilewska.

Affiliation: J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30- 239 Cracow, Poland.


The aim of this work was to critically review recent results pertinent to fibrinogen adsorption at solid/electrolyte interfaces with the emphasis focused on a quantitative analysis of these processes in terms of the electrostatic interactions. Accordingly, in the first part, the primary chemical structure of fibrinogen is analyzed. Physicochemical data pertinent to the bulk properties derived from hydrodynamic, dynamic light scattering and micro-electrophoretic measurements aided by theoretical modeling are discussed. Possible conformations and the effective charge distribution over the fibrinogen molecule for various pH an ionic strength are defined, especially the semi-collapsed conformation prevailing at physiological conditions. Adsorption kinetics of fibrinogen at hydrophilic and hydrophobic (polymer modified) substrates determined by various techniques is described. Adsorption at polymeric carrier particles, pertinent to immunological assays, studied in terms of electrokinetic and concentration depletion methods, are also considered. The reversibility of adsorption, fibrinogen molecule orientations and maximum coverages are thoroughly discussed. The stability of fibrinogen monolayers formed at these carrier particles in respect to pH and ionic strength cyclic changes is also discussed. In the final section interactions and deposition of model colloid particles on fibrinogen monolayers are analyzed which allows one to derive valuable information about molecule orientations. Based on the physicochemical data, adsorption kinetics and colloid particle deposition measurements, probable adsorption mechanisms of fibrinogen on solid/electrolyte interfaces are defined.


Adsorption of fibrinogen, conformations of fibrinogen in electrolyte solutions, electrophoretic mobility and charge of fibrinogen molecule, fibrinogen adsorption mechanisms, fibrinogen molecule shape and size, interactions of bioparticles with fibrinogen monolayers, monolayers of fibrinogen on solid substrates.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 14
Issue Number: 6
First Page: 702
Last Page: 729
Page Count: 28
DOI: 10.2174/1568026614666140118215158
Price: $58

Related Journals

Webmaster Contact: Copyright © 2016 Bentham Science