Role of Bone-Type Tissue-Nonspecific Alkaline Phosphatase and PHOSPO1 in Vascular Calcification

ISSN: 1873-4286 (Online)
ISSN: 1381-6128 (Print)


Volume 20, 42 Issues, 2014


Download PDF Flyer




Current Pharmaceutical Design

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 62nd of 254 in Pharmacology & Pharmacy

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
William A. Banks
VAPSHCS/GRECC S-182
Building 1, Room 810A
1600 S. Columbian Way
Seattle, WA 98108
USA


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 3.288
5 - Year: 3.555

Role of Bone-Type Tissue-Nonspecific Alkaline Phosphatase and PHOSPO1 in Vascular Calcification

Author(s): Yuri V. Bobryshev, Alexander N. Orekhov, Igor Sobenin and Dimitry A. Chistiakov

Affiliation: Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, 1 Ostrovityanova Str., 117997 Moscow, Russia.

Abstract

Matrix vesicle (MV)-mediated mineralization is important for bone ossification. However, under certain circumstances such as atherosclerosis, mineralization may occur in the arterial wall. Bone-type tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes inorganic pyrophosphate (PPi) and generates inorganic phosphate (Pi), which is essential for MV-mediated hydroxyapatite formation. MVs contain another phosphatase, PHOSPHO1, that serves as an additional supplier of Pi. Activation of bone-type tissue-nonspecific alkaline phosphatase (TNAP) in vascular smooth muscle cells precedes vascular calcification. By degrading PPi, TNAP plays a procalcific role changing the Pi/PPi ratio toward mineralization. A pathologic role of bone-type TNAP and PHOSPHO1 make them to be attractive targets for cardiovascular therapy.

Keywords: Arterial calcification, atherosclerosis, vascular smooth muscle cells, mineralizing matrix vesicles, bone-type tissue-nonspecific alkaline phosphatise, PHOSPO1.

Purchase Online Rights and Permissions

  
  



Article Details

Volume: 20
Issue Number: 37
First Page: 5821
Last Page: 5828
Page Count: 8
DOI: 10.2174/1381612820666140212193011
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science