The Neuroprotective Mechanism of Erythropoietin-TAT Fusion Protein Against Neurodegeneration from Ischemic Brain Injury

ISSN: 1996-3181 (Online)
ISSN: 1871-5273 (Print)

Volume 15, 10 Issues, 2016

Download PDF Flyer

CNS & Neurological Disorders - Drug Targets

Formerly: Current Drug Targets - CNS & Neurological Disorders

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 107th of 254 in Pharmacology & Pharmacy

Submit Abstracts Online Submit Manuscripts Online

Stephen D. Skaper
Department of Pharmaceutical and Pharmacological Sciences
University of Padova

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.628
5 - Year: 3.148

The Neuroprotective Mechanism of Erythropoietin-TAT Fusion Protein Against Neurodegeneration from Ischemic Brain Injury

CNS & Neurological Disorders - Drug Targets, Volume 12 (E-pub ahead of print)

Author(s): P Liu, X Liu, Liou AKF, J Xing, Z Jing, X Ji, X Liu, H Zhao, F Yan, J Chen, G Cao and Y Luo.

Affiliation: Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, 45 Changchun Street, Beijing 100053, P.R. China.


Aims: To compare the neuroprotection of erythropoietin (EPO) and EPO fusion protein containing transduction domain derived from HIV TAT (EPO-TAT) against ischemic brain injury, inclusive of the side effect, and explore the mechanism underlying the role of EPO-TAT in a transient focal cerebral ischemia model in rats. Methods: Transient focal ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. Rats were treated, respectively, with following regimens: saline, 1000 U/kg EPO, 5000 U/kg EPO, 1000 U/kg EPO-TAT, 1000 U/kg EPO-TAT + 5 µl of 10 mM LY294002 (or/plus 5 µl of 5 mM PD98059). Neurological deficit scores, infarct volume, and hematologic side effect were assessed at 72 hours after MCAO. Apoptotic cells were determined with TUNEL staining. The expression and localization of phosphorylated AKT (pAKT) and phosphorylated ERK (pERK) were detected with Western blot, immunohistochemistry, and immunofluorescence, respectively. Results: 1000 U/kg EPO-TAT exhibited a comparable neuroprotection to 5000 U/kg EPO, as evidenced by a comparable attenuation in neurological deficit, infarct volume, and number of apoptotic cells in the rat ischemic cortex after MCAO. The pAKT and pERK levels were significantly elevated solely in neurons of rodents receiving EPO or EPO-TAT treatments, suggesting the concurrent activation of these two pathways. Specific inhibition of either AKT or ERK pathway partially abolished EPO-TAT protection, but exhibited no influence on the activation status of its counterpart, suggesting no cross-modulation between these two protective pathways. Conclusion: Our study indicates that EPO-TAT at 1000 U/kg displays neuroprotection with no detectable side effects. The mechanism for neuroprotection may be attributable to the simultaneous activation of the AKT and ERK pathways, which preserve neuronal cell viability and attenuate behavioral deficits

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 12
First Page: 1
Page Count: 1
DOI: 10.2174/18715273113129990108

Related Journals

Webmaster Contact: Copyright © 2016 Bentham Science