Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

New Emerging Aspect of Herbal Extracts for the Treatment of Osteoporosis: Overview

Author(s): Priyanka Kumari, Raj K. Shirumalla, Vijay Bhalla and Md Sabir Alam*

Volume 20, Issue 4, 2024

Published on: 01 January, 2024

Page: [361 - 372] Pages: 12

DOI: 10.2174/0115733971273691231121131455

Price: $65

Abstract

As the global population ages, osteoporosis is becoming a more common silent disease. Osteoporosis is characterized by decreased bone quality and strength, which increases the risk of fragility fractures in the elderly. According to estimates, 50% of women eventually suffer from an osteoporotic fracture. Due to increasing disability, more frequent hospital hospitalizations, and most critically, fragility fractures have been linked to a reduced quality of life. Osteoporotic fractures have been linked to an increased mortality risk; and must be considered in awareness as a serious health concern. There are anti-osteoporotic medications available that improve bone quality. Considering the availability of various treatment options, still there are a lot of underserved needs in the treatment of fractures and osteoporosis. For example, the application of natural products and herbal resources for fracture healing, because of the androgen-like and antioxidant characteristics of the plants, they can play a crucial for accelerating the repair of bone fractures. In this article, we’ll discuss the herbal remedies that are essential for treating osteoporosis (bone disease).

Keywords: Herbal extract, osteoporosis, pathways, mechanism of action, antioxidant, mortality risk.

Graphical Abstract
[1]
Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785-95.
[2]
Liu HY. Clinical observation of epimedii herba in the treatment of osteoporosis. Nei Mongol J Tradit Chin Med 2019; 38(1): 16-7.
[3]
Alshahrani F, Alsulaiman YA, Almashari YM, et al. Use of the osteoporosis self-assessment tool as a screening tool for osteoporosis in saudi postmenopausal women. Cureus 2023; 15(4): e37755.
[http://dx.doi.org/10.7759/cureus.37755] [PMID: 37213999]
[4]
Waugh EJ, Lam MA, Hawker GA, et al. Risk factors for low bone mass in healthy 40–60 year old women: A systematic review of the literature. Osteoporos Int 2009; 20(1): 1-21.
[http://dx.doi.org/10.1007/s00198-008-0643-x] [PMID: 18523710]
[5]
Ray NF, Chan JK, Thamer M, Melton LJ III. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 1997; 12(1): 24-35.
[http://dx.doi.org/10.1359/jbmr.1997.12.1.24] [PMID: 9240722]
[6]
Kanis JA, Johnell O, Oden A, et al. Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int 2000; 11(8): 669-74.
[http://dx.doi.org/10.1007/s001980070064] [PMID: 11095169]
[7]
Reginster JY. Antifracture efficacy of currently available therapies for postmenopausal osteoporosis. Drugs 2011; 71(1): 65-78.
[http://dx.doi.org/10.2165/11587570-000000000-00000] [PMID: 21175240]
[8]
Genant HK, Cooper C, Poor G, et al. Interim report and recommendations of the World Health Organization task-force for osteoporosis. Osteoporos Int 1999; 10(4): 259-64.
[http://dx.doi.org/10.1007/s001980050224] [PMID: 10692972]
[9]
Diez-Perez A, Naylor KE, Abrahamsen B, et al. International osteoporosis foundation and european calcified tissue society working group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos Int 2017; 28(3): 767-74.
[http://dx.doi.org/10.1007/s00198-017-3906-6] [PMID: 28093634]
[10]
Qureshi A, Ullas M, Ramalingaiah A. Burden of osteoporosis in the urban Indian population. EC Orthopaedics 2017; 7: 74-81.
[11]
Kanis JA, Norton N, Harvey NC, et al. SCOPE 2021: A new scorecard for osteoporosis in Europe. Arch Osteoporos 2021; 16(1): 82.
[http://dx.doi.org/10.1007/s11657-020-00871-9] [PMID: 34080059]
[12]
Resál T, Mangó K, Bacsur P, et al. Possible genetical predictors of efficacy and safety of budesonide-MMX in patients with mild- to-moderate ulcerative colitis, and safety comparison with methylprednisolone. Expert Opin Drug Saf 2023; 22(6): 517-24.
[http://dx.doi.org/10.1080/14740338.2023.2181336] [PMID: 36811412]
[13]
Ti YF, Wang R, Zhao JN. Mechanism of osteoclast in bone resorption. Zhongguo gu shang China journal of orthopaedics and traumatology 2014; 27(6): 529-32.
[14]
Yan C, Zhang J, An F, et al. Research progress of ferroptosis regulatory network and bone remodeling in osteoporosis. Front Public Health 2022; 10: 910675.
[http://dx.doi.org/10.3389/fpubh.2022.910675] [PMID: 35844870]
[15]
Christiansen C. Prevention and treatment of osteoporosis with hormone replacement therapy. Int J Fertil Menopausal Stud 1993; 38 (Suppl. 1): 45-54.
[PMID: 8499959]
[16]
Eisman JA. Genetics of osteoporosis. Endocr Rev 1999; 20(6): 788-804.
[http://dx.doi.org/10.1210/edrv.20.6.0384] [PMID: 10605626]
[17]
Gilsanz V, Kovanlikaya A, Costin G, Roe TF, Sayre J, Kaufman F. Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 1997; 82(5): 1603-7.
[http://dx.doi.org/10.1210/jc.82.5.1603] [PMID: 9141557]
[18]
Leung PC, Siu WS. Herbal treatment for osteoporosis: A current review. J Tradit Complement Med 2013; 3(2): 82-7.
[http://dx.doi.org/10.4103/2225-4110.110407] [PMID: 24716161]
[19]
Zhang ND, Han T, Huang BK, et al. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. J Ethnopharmacol 2016; 189: 61-80.
[http://dx.doi.org/10.1016/j.jep.2016.05.025] [PMID: 27180315]
[20]
Norazlina M, Ima-Nirwana S, Gapor MTA, Khalid BAK. Tocotrienols are needed for normal bone calcification in growing female rats. Asia Pac J Clin Nutr 2002; 11(3): 194-9.
[http://dx.doi.org/10.1046/j.1440-6047.2002.00290.x] [PMID: 12230232]
[21]
French DL, Muir JM, Webber CE. The ovariectomized, mature rat model of postmenopausal osteoporosis: An assessment of the bone sparing effects of curcumin. Phytomedicine 2008; 15(12): 1069-78.
[http://dx.doi.org/10.1016/j.phymed.2008.06.007] [PMID: 18693096]
[22]
Li XJ, Zhang HY. Synergy in natural medicines: Implications for drug discovery. Trends Pharmacol Sci 2008; 29(7): 331-2.
[http://dx.doi.org/10.1016/j.tips.2008.04.002] [PMID: 18502520]
[23]
Lagari VS, Levis S. Phytoestrogens and bone health. Curr Opin Endocrinol Diabetes Obes 2010; 17(6): 546-53.
[http://dx.doi.org/10.1097/MED.0b013e32833f4867] [PMID: 20871396]
[24]
Liang W, Yew DT, Hon KL, Wong CK, Kwok TCY, Leung PC. Indispensable value of clinical trials in the modernization of traditional Chinese medicine: 12 years’ experience at CUHK and future perspectives. Am J Chin Med 2014; 42(3): 587-604.
[http://dx.doi.org/10.1142/S0192415X14500384] [PMID: 24871653]
[25]
Chahal PK, Bains K, Kaur H. Protective effect of indian herbs and physical exercise on osteoporosis: A review. Food Rev Int 2023; 39(2): 708-25.
[26]
Bose S, Sarkar N, Banerjee D. Natural medicine delivery from biomedical devices to treat bone disorders: A review. Acta Biomater 2021; 126: 63-91.
[http://dx.doi.org/10.1016/j.actbio.2021.02.034] [PMID: 33657451]
[27]
Zhang X, Jin M, Tadesse N, et al. Dioscorea zingiberensis C. H. Wright: An overview on its traditional use, phytochemistry, pharmacology, clinical applications, quality control, and toxicity. J Ethnopharmacol 2018; 220: 283-93.
[http://dx.doi.org/10.1016/j.jep.2018.03.017] [PMID: 29602601]
[28]
Clarke BL, Khosla S. Physiology of bone loss. Radiol Clin North Am 2010; 48(3): 483-95.
[http://dx.doi.org/10.1016/j.rcl.2010.02.014] [PMID: 20609887]
[29]
Manolagas SC. From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis. Endocr Rev 2010; 31(3): 266-300.
[http://dx.doi.org/10.1210/er.2009-0024] [PMID: 20051526]
[30]
Zallone A. Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann N Y Acad Sci 2006; 1068(1): 173-9.
[http://dx.doi.org/10.1196/annals.1346.019] [PMID: 16831916]
[31]
Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001; 22(4): 477-501.
[http://dx.doi.org/10.1210/edrv.22.4.0437] [PMID: 11493580]
[32]
Khosla S, Pacifici R. Estrogen deficiency and the pathogenesis of osteoporosis. Marcus and Feldman's Osteoporosis. Academic Press 2021; pp. 773-97.
[http://dx.doi.org/10.1016/B978-0-12-813073-5.00032-0]
[33]
Khundmiri SJ, Murray RD, Lederer E. PTH and vitamin D. Compr Physiol 2016; 6(2): 561-601.
[http://dx.doi.org/10.1002/cphy.c140071] [PMID: 27065162]
[34]
Wang L, Song Y, Manson JE, et al. Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: A meta-analysis of prospective studies. Circ Cardiovasc Qual Outcomes 2012; 5(6): 819-29.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.112.967604] [PMID: 23149428]
[35]
Avenell A, Mak JC, O’Connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev 2014; 2014(4): CD000227.
[PMID: 24729336]
[36]
Cranney A, Horsley T, O’Donnell S, et al. Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess 2007; (158): 1-235.
[PMID: 18088161]
[37]
Marriott BP, Birt DF, Stalling VA, Yates AA, Eds. Present knowledge in nutrition: basic nutrition and metabolism. Academic Press 2020.
[38]
Panda DK, Miao D, Bolivar I, et al. Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 2004; 279(16): 16754-66.
[http://dx.doi.org/10.1074/jbc.M310271200] [PMID: 14739296]
[39]
Silver J, Levi R. Regulation of PTH synthesis and secretion relevant to the management of secondary hyperparathyroidism in chronic kidney disease. Kidney Int 2005; 67(95): S8-S12.
[http://dx.doi.org/10.1111/j.1523-1755.2005.09501.x] [PMID: 15882315]
[40]
Saliba W, El-Haddad B. Secondary hyperparathyroidism: Pathophysiology and treatment. J Am Board Fam Med 2009; 22(5): 574-81.
[http://dx.doi.org/10.3122/jabfm.2009.05.090026] [PMID: 19734404]
[41]
Oprisiu R, Hottelart C, Ghitsu S, et al. Renal osteodystrophy (1): Invasive and non-invasive diagnosis of its pathologic varieties. Nephrologie 2000; 21(5): 229-37.
[PMID: 11068772]
[42]
Jabur WL. Familial vitamin D deficient osteomalacia and renal osteodystrophy: Shaping up the debate. Saudi J Kidney Dis Transpl 2010; 21(1): 128-30.
[PMID: 20061707]
[43]
Queiroz IV, Queiroz SP, Medeiros R Jr, Ribeiro RB, Crusoé-Rebello IM, Leão JC. Brown tumor of secondary hyperparathyroidism: Surgical approach and clinical outcome. Oral Maxillofac Surg 2016; 20(4): 435-9.
[http://dx.doi.org/10.1007/s10006-016-0575-0] [PMID: 27640197]
[44]
Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002; 23(3): 279-302.
[http://dx.doi.org/10.1210/edrv.23.3.0465] [PMID: 12050121]
[45]
Riggs BL, Melton LJ III, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 2004; 19(12): 1945-54.
[http://dx.doi.org/10.1359/jbmr.040916] [PMID: 15537436]
[46]
Riggs BL, Khosla S, Melton LJ III. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998; 13(5): 763-73.
[http://dx.doi.org/10.1359/jbmr.1998.13.5.763] [PMID: 9610739]
[47]
Salari N, Ghasemi H, Mohammadi L, et al. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J Orthop Surg Res 2021; 16(1): 609.
[http://dx.doi.org/10.1186/s13018-021-02772-0] [PMID: 33397415]
[48]
Ralston SH. Genetics of osteoporosis: symposium on ‘genetic polymorphisms and disease risk. Proc Nutr Soc 2007; 66(2): 158-65.
[http://dx.doi.org/10.1017/S002966510700540X] [PMID: 17466098]
[49]
Mäkitie RE, Costantini A, Kämpe A, Alm JJ, Mäkitie O. New insights into monogenic causes of osteoporosis. Front Endocrinol 2019; 10: 70.
[http://dx.doi.org/10.3389/fendo.2019.00070] [PMID: 30858824]
[50]
Brunkow ME, Gardner JC, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001; 68(3): 577-89.
[http://dx.doi.org/10.1086/318811] [PMID: 11179006]
[51]
Khedgikar V, Kushwaha P, Gautam J, et al. Withaferin A: A proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis 2013; 4(8): e778.
[http://dx.doi.org/10.1038/cddis.2013.294] [PMID: 23969857]
[52]
Dey D, Jingar P, Agrawal S, et al. Symphytum officinale augments osteogenesis in human bone marrow-derived mesenchymal stem cells in vitro as they differentiate into osteoblasts. J Ethnopharmacol 2020; 248: 112329.
[http://dx.doi.org/10.1016/j.jep.2019.112329] [PMID: 31672526]
[53]
Guo Y, Li Y, Xue L, et al. Salvia miltiorrhiza: An ancient Chinese herbal medicine as a source for anti-osteoporotic drugs. J Ethnopharmacol 2014; 155(3): 1401-16.
[http://dx.doi.org/10.1016/j.jep.2014.07.058] [PMID: 25109459]
[54]
Słupski W, Jawień P, Nowak B. Botanicals in postmenopausal osteoporosis. Nutrients 2021; 13(5): 1609.
[http://dx.doi.org/10.3390/nu13051609]
[55]
Kogan NM, Melamed E, Wasserman E, et al. Cannabidiol, a major non-psychotropic cannabis constituent enhances fracture healing and stimulates lysyl hydroxylase activity in osteoblasts. J Bone Miner Res 2015; 30(10): 1905-13.
[http://dx.doi.org/10.1002/jbmr.2513] [PMID: 25801536]
[56]
Chhavi S, Sushma D, Ravinder V, Anju D, Asha S. Recent update on proficient bone fracture revivifying herbs. Int Res J Pharm 2011; 2: 3-5.
[57]
Estai MA, Suhaimi FH, Das S, et al. Piper sarmentosum enhances fracture healing in ovariectomized osteoporotic rats: A radiological study. Clinics 2011; 66(5): 865-72.
[http://dx.doi.org/10.1590/S1807-59322011000500025]
[58]
Hanprasertpong N, Teekachunhatean S, Chaiwongsa R, et al. Analgesic, anti-inflammatory, and chondroprotective activities of Cryptolepis buchanani extract: in vitro and in vivo studies. BioMed Res Int 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/978582] [PMID: 25247198]
[59]
Beg S, Hasan H, Hussain MS, Swain S, Barkat MA. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives. Pharmacogn Rev 2011; 5(10): 120-37.
[http://dx.doi.org/10.4103/0973-7847.91102] [PMID: 22279370]
[60]
Garang Z, Feng Q, Luo R, et al. Commiphora mukul (Hook. ex Stocks) Engl.: Historical records, application rules, phytochemistry, pharmacology, clinical research, and adverse reaction. J Ethnopharmacol 2023; 317: 116717.
[http://dx.doi.org/10.1016/j.jep.2023.116717] [PMID: 37301302]
[61]
Kakadia N, Kanaki N. Anti-osteoporotic effect of Terminalia arjuna (Roxb.) Wight & Arn. In bilateral ovariectomized induced post-menopausal osteoporosis in experimental rats. J Complement Integr Med 2021; 20(2): 395-403.
[http://dx.doi.org/10.1515/jcim-2021-0068] [PMID: 34798688]
[62]
Rajoria K, Singh S, Sharma RS, Sharma SN. Clinical study on Laksha Guggulu, Snehana, Swedana & traction in osteoarthritis (knee joint). Ayu 2010; 31(1): 80-7.
[http://dx.doi.org/10.4103/0974-8520.68192] [PMID: 22131690]
[63]
Thourp AC, Lambert MN, Kahr HS, Bjerre M, Jeppesen PB. Intake of novel red clover supplementation for 12 weeks improves bone status in healthy menopausal women. Evid Based Complement Alternat Med 2015; 2015.
[64]
Mühlbauer RC, Lozano A, Palacio S, Reinli A, Felix R. Common herbs, essential oils, and monoterpenes potently modulate bone metabolism. Bone 2003; 32(4): 372-80.
[http://dx.doi.org/10.1016/S8756-3282(03)00027-9] [PMID: 12689680]
[65]
Prasad S, Aggarwal BB. Turmeric, the golden spice. Herbal Medicine: Biomolecular and Clinical Aspects. (2nd edition), CRC Press, 2011.
[66]
Shady AM, Nooh HZ. Effect of black seed (Nigella sativa) on compact bone of streptozotocin induced diabetic rats. Egypt J Histol 2010; 33(1): 168-77.
[http://dx.doi.org/10.1097/00767537-201003000-00016]
[67]
Husniza H. Estrogenic and androgenic activities of Kacip Fatimah (Labisia pumila). Kuala Lumpur, Malaysia: Institute for Medical Research, Ministry of Health Malaysia 2002.
[68]
Schütz K, Carle R, Schieber A. Taraxacum—A review on its phytochemical and pharmacological profile. J Ethnopharmacol 2006; 107(3): 313-23.
[http://dx.doi.org/10.1016/j.jep.2006.07.021] [PMID: 16950583]
[69]
Repajić M, Cegledi E, Zorić Z, et al. Bioactive compounds in wild nettle (Urtica dioica L.) leaves and stalks: Polyphenols and pigments upon seasonal and habitat variations. Foods 2021; 10(1): 190.
[http://dx.doi.org/10.3390/foods10010190] [PMID: 33477689]
[70]
Finney A, Lambourne H, Cottrell E. Osteoarthritis management in primary care. Pract Nurs 2019; 2019(3): 114-8.
[http://dx.doi.org/10.12968/pnur.2019.30.3.114]
[71]
Kim WK, Donalson LM, Mitchell AD, Kubena LF, Nisbet DJ, Ricke SC. Effects of alfalfa and fructooligosaccharide on molting parameters and bone qualities using dual energy X-ray absorptiometry and conventional bone assays. Poult Sci 2006; 85(1): 15-20.
[http://dx.doi.org/10.1093/ps/85.1.15] [PMID: 16493940]
[72]
Alamgir AN, Alamgir AN. Phytoconstituents—Active and inert constituents, metabolic pathways, chemistry and application of phytoconstituents, primary metabolic products, and bioactive compounds of primary metabolic origin. Therapeutic Use of Medicinal Plants and their Extracts. 2018; 2: pp. 25-164.
[73]
Cai L, Li H, Wei Y. Effect of Yangxue bushen tablet on ovarian function in animal model of Yang deficiency. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi Jiehe Zazhi= Chinese Journal of Integrated Traditional and Western Medicine 1998; 18(10): 620-2.
[74]
Henriksen K, Karsdal MA, John Martin T. Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int 2014; 94(1): 88-97.
[http://dx.doi.org/10.1007/s00223-013-9741-7] [PMID: 23700149]
[75]
Kang JY, Kang N, Yang YM, Hong JH, Shin DM. The role of Ca2+-NFATc1 signaling and its modulation on osteoclastogenesis. Int J Mol Sci 2020; 21(10): 3646.
[http://dx.doi.org/10.3390/ijms21103646] [PMID: 32455661]
[76]
Wong SK, Chin KY, Ima-Nirwana S. The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies. Drug Des Devel Ther 2019; 13: 3497-514.
[http://dx.doi.org/10.2147/DDDT.S227738] [PMID: 31631974]
[77]
Xie CL, Park KH, Kang SS, Cho KM, Lee DH. Isoflavone-enriched soybean leaves attenuate ovariectomy-induced osteoporosis in rats by anti-inflammatory activity. J Sci Food Agric 2021; 101(4): 1499-506.
[http://dx.doi.org/10.1002/jsfa.10763] [PMID: 32851642]
[78]
Hojo H, Ohba S. Gene regulatory landscape in osteoblast differentiation. Bone 2020; 137: 115458.
[http://dx.doi.org/10.1016/j.bone.2020.115458] [PMID: 32474244]
[79]
Chen LX, He H, Qiu F. Natural withanolides: An overview. Nat Prod Rep 2011; 28(4): 705-40.
[http://dx.doi.org/10.1039/c0np00045k] [PMID: 21344104]
[80]
Bolleddula J, Fitch W, Vareed SK, Nair MG. Identification of metabolites in Withania sominfera fruits by liquid chromatography and high-resolution mass spectrometry. Rapid Commun Mass Spectrom 2012; 26(11): 1277-90.
[http://dx.doi.org/10.1002/rcm.6221] [PMID: 22555921]
[81]
Hu P, Liang QL, Luo GA, Zhao ZZ, Jiang ZH. Multi-component HPLC fingerprinting of Radix Salviae Miltiorrhizae and its LC-MS-MS identification. Chem Pharm Bull 2005; 53(6): 677-83.
[http://dx.doi.org/10.1248/cpb.53.677] [PMID: 15930782]
[82]
Krithiga G, Hemalatha T, Deepachitra R, Ghosh K, Sastry TP. Study on osteopotential activity of Terminalia arjuna bark extract incorporated bone substitute. Bull Mater Sci 2014; 37(6): 1331-8.
[http://dx.doi.org/10.1007/s12034-014-0079-1]
[83]
Mandal S, Patra A, Samanta A, et al. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac J Trop Biomed 2013; 3(12): 960-6.
[http://dx.doi.org/10.1016/S2221-1691(13)60186-0] [PMID: 24093787]
[84]
Afroz H, Sultana A. Herbal drugs used for de-addiction of alcohol (2019). 2019.
[85]
Jia Q, Zhu R, Tian Y, et al. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. Phytomedicine 2019; 58: 152871.
[http://dx.doi.org/10.1016/j.phymed.2019.152871] [PMID: 30851580]
[86]
MEIm XD, Cao YF, Che YY, et al. Danshen: A phytochemical and pharmacological overview. Chin J Nat Med 2019; 17(1): 59-80.
[http://dx.doi.org/10.1016/S1875-5364(19)30010-X] [PMID: 30704625]
[87]
Clouse G, Penman S, Hadjiargyrou M, Komatsu DE, Thanos PK. Examining the role of cannabinoids on osteoporosis: A review. Arch Osteoporos 2022; 17(1): 146.
[http://dx.doi.org/10.1007/s11657-022-01190-x] [PMID: 36401719]
[88]
Ryan KJ. Biochemistry of aromatase: Significance to female reproductive physiology. Cancer Res 1982; 42(8) (Suppl.): 3342s-4s.
[PMID: 7083198]
[89]
Notelovitz M. Estrogen therapy and osteoporosis: Principles & practice. Am J Med Sci 1997; 313(1): 2-12.
[PMID: 9001160]
[90]
Silva I, Branco JC. Rank/Rankl/opg: Literature review. Acta Reumatol Port 2011; 36(3): 209-18.
[PMID: 22113597]
[91]
Kang MA, Lee J, Park SH. Cannabidiol induces osteoblast differentiation via angiopoietin1 and p38 MAPK. Environ Toxicol 2020; 35(12): 1318-25.
[http://dx.doi.org/10.1002/tox.22996] [PMID: 32656944]
[92]
He L, Duan H, Li X, et al. Sinomenine down-regulates TLR4/TRAF6 expression and attenuates lipopolysaccharide-induced osteoclastogenesis and osteolysis. Eur J Pharmacol 2016; 779: 66-79.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.014] [PMID: 26965104]
[93]
Castellano D, Sepulveda JM, García-Escobar I, Rodriguez-Antolín A, Sundlöv A, Cortes-Funes H. The role of RANK-ligand inhibition in cancer: The story of denosumab. Oncologist 2011; 16(2): 136-45.
[http://dx.doi.org/10.1634/theoncologist.2010-0154] [PMID: 21285392]
[94]
Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells 2020; 9(9): 2073.
[http://dx.doi.org/10.3390/cells9092073] [PMID: 32927921]
[95]
Tsukasaki M, Hamada K, Okamoto K, et al. LOX fails to substitute for RANKL in osteoclastogenesis. J Bone Miner Res 2017; 32(3): 434-9.
[http://dx.doi.org/10.1002/jbmr.2990] [PMID: 27606829]
[96]
Liu FL, Chen CL, Lai CC, Lee CC, Chang DM. Arecoline suppresses RANKL-induced osteoclast differentiation in vitro and attenuates LPS-induced bone loss in vivo. Phytomedicine 2020; 69: 153195.
[http://dx.doi.org/10.1016/j.phymed.2020.153195] [PMID: 32200293]
[97]
Jiang Y, Sang W, Wang C, et al. Oxymatrine exerts protective effects on osteoarthritis via modulating chondrocyte homoeostasis and suppressing osteoclastogenesis. J Cell Mol Med 2018; 22(8): 3941-54.
[http://dx.doi.org/10.1111/jcmm.13674] [PMID: 29799160]
[98]
Grover A, Shandilya A, Punetha A, Bisaria VS, Sundar D. Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera’s key metabolite withaferin A. BMC genomics 2010; 11(Suppl 4): S25.
[99]
Mueller CG, Hess E. Emerging functions of RANKL in lymphoid tissues. Front Immunol 2012; 3: 261.
[http://dx.doi.org/10.3389/fimmu.2012.00261] [PMID: 22969763]
[100]
Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12(1): 17-25.
[http://dx.doi.org/10.1016/j.molmed.2005.11.007] [PMID: 16356770]
[101]
Zhao X, Lin S, Li H, Si S, Wang Z. Myeloperoxidase controls bone turnover by suppressing osteoclast differentiation through modulating reactive oxygen species level. J Bone Miner Res 2021; 36(3): 591-603.
[http://dx.doi.org/10.1002/jbmr.4215] [PMID: 33289180]
[102]
Heyninck K, Lahtela-Kakkonen M, Van der Veken P, Haegeman G, Vanden Berghe W. Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKβ. Biochem Pharmacol 2014; 91(4): 501-9.
[http://dx.doi.org/10.1016/j.bcp.2014.08.004] [PMID: 25159986]
[103]
Hu B, Sun X, Yang Y, et al. Tomatidine suppresses osteoclastogenesis and mitigates estrogen deficiency-induced bone mass loss by modulating TRAF6-mediated signaling. FASEB J 2019; 33(2): 2574-86.
[http://dx.doi.org/10.1096/fj.201800920R] [PMID: 30285579]
[104]
Chan M. Address at the WHO congress on traditional medicine. World Health Organization congress on Traditional Medicine. 2008.
[105]
Soelaiman IN, Das S, Shuid AN, Mo H, Mohamed N. Use of medicinal plants and natural products for treatment of osteoporosis and its complications. Evid Based Complement Alternat Med 2013; 2013: 764701.
[http://dx.doi.org/10.1155/2013/764701]
[106]
Dawson-Hughes B, Looker AC, Tosteson ANA, Johansson H, Kanis JA, Melton LJ III. The potential impact of new National Osteoporosis Foundation guidance on treatment patterns. Osteoporos Int 2010; 21(1): 41-52.
[http://dx.doi.org/10.1007/s00198-009-1034-7] [PMID: 19705046]
[107]
Xie F, Wu CF, Lai WP, et al. The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro. Evid Based Complement Alternat Med 2005; 2(3): 353-61.
[http://dx.doi.org/10.1093/ecam/neh101] [PMID: 16136213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy