Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Interaction of C-terminal Truncated Beta-amyloid Peptides with Human Serum Albumin

Author(s): Diba Aslani Firozabadi, Mohammad Reza Bozorgmehr*, Safar Ali Beyramabadi and Sharareh Mohseni

Volume 20, Issue 3, 2023

Published on: 28 November, 2023

Page: [145 - 157] Pages: 13

DOI: 10.2174/0115701646243074231113071548

Price: $65

Abstract

Background: The formation of plaque from protein fibrils is the major source of diseases, such as Alzheimer's and Prion diseases. Amyloid beta (Aβ) is a peptide with different lengths, which is one of the main components of the plaque in the brain of people with Alzheimer's. Of the amyloid beta of various lengths in the brain cells plaque, beta-amyloid with 40 amino acids (Aβ1- 40) is more abundant than the rest. Aβ monomers are in a dynamic equilibrium of various conformations with beta sheets that aggregate as oligomers or larger structures. The misfolding of betaamyloid peptide is involved in its accumulation. On the other hand, various species that exist in the cell environment can affect the structure of beta-amyloid peptides.

Aims: This study aimed to study the interaction of truncated forms of beta-amyloid peptide with human albumin serum protein.

Objective: Interaction of beta-amyloid peptide with other proteins is effective in causing Alzheimer's disease. These include interactions between beta-amyloid and cell surface proteins, such as prions and extracellular proteins, such as clusterins and human serum albumin (HSA). As HSA concentrations are higher than other proteins, more than half of the interaction of beta-amyloid with proteins is related to interaction with this protein. Interaction of HSA with beta-amyloid reduces the aggregation of beta-amyloid. However, due to the diversity of beta-amyloid peptides with different lengths, the mechanism of their interaction with HSA has not been well understood. In this work, the interaction of C-terminal truncated beta-amyloid peptides with HSA has been investigated.

Method: The C-terminal truncated forms of beta-amyloid peptides, Aβ1 - 26, Aβ1 - 30, and Aβ1 - 36 and Aβ1 - 40 were designed in silico. Docking between these truncated peptides was performed with serum albumin. A molecular dynamics simulation of the interaction of designed peptides with serum albumin was also performed.

Results and Discussion: The results showed that Aβ1 - 26 and Aβ1 - 30 peptides interact with the interfacial region of the chains A and B of HSA and the surface of the HSA. While the interaction of Aβ1 - 36 and Aβ1 - 40 peptides occurs only with the HSA surface. On the other hand, the interaction of peptides with chain A of HSA is more favorable than their interaction with chain B of HSA. Also, as the length of the peptide increases, the number of residues involved in the hydrophobic interaction increases. The results of molecular dynamics simulation confirm the results obtained from docking.

Conclusion: The results of molecular dynamics and docking simulations show that the binding affinity of peptides to serum albumin decreases with peptide shortening. Also, by changing the structure of beta-amyloid peptides, serum albumin reduces their tendency to aggregate.

Keywords: Protein-protein interaction, side chain, hydrophobic interaction, Alzheimer's, aggregation, beta-amyloid, fibrillation.

Next »
Graphical Abstract
[1]
Newman, M.; Musgrave, F.I.; Lardelli, M. Alzheimer disease: Amyloidogenesis, the presenilins and animal models. Biochim. Biophys. Acta Mol. Basis Dis., 2007, 1772(3), 285-297.
[http://dx.doi.org/10.1016/j.bbadis.2006.12.001] [PMID: 17208417]
[2]
Nasica-Labouze, J.; Nguyen, P.H.; Sterpone, F.; Berthoumieu, O.; Buchete, N.V.; Coté, S.; De Simone, A.; Doig, A.J.; Faller, P.; Garcia, A.; Laio, A.; Li, M.S.; Melchionna, S.; Mousseau, N.; Mu, Y.; Paravastu, A.; Pasquali, S.; Rosenman, D.J.; Strodel, B.; Tarus, B.; Viles, J.H.; Zhang, T.; Wang, C.; Derreumaux, P. Amyloid β protein and Alzheimer’s disease: When computer simulations complement experimental studies. Chem. Rev., 2015, 115(9), 3518-3563.
[http://dx.doi.org/10.1021/cr500638n] [PMID: 25789869]
[3]
Laurén, J.; Gimbel, D.A.; Nygaard, H.B.; Gilbert, J.W.; Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature, 2009, 457(7233), 1128-1132.
[http://dx.doi.org/10.1038/nature07761] [PMID: 19242475]
[4]
Sleegers, K.; Lambert, J.C.; Bertram, L.; Cruts, M.; Amouyel, P.; Van Broeckhoven, C. The pursuit of susceptibility genes for Alzheimer’s disease: Progress and prospects. Trends Genet., 2010, 26(2), 84-93.
[http://dx.doi.org/10.1016/j.tig.2009.12.004] [PMID: 20080314]
[5]
Kuo, Y.M.; Kokjohn, T.A.; Kalback, W.; Luehrs, D.; Galasko, D.R.; Chevallier, N.; Koo, E.H.; Emmerling, M.R.; Roher, A.E. Amyloid-β peptides interact with plasma proteins and erythrocytes: Implications for their quantitation in plasma. Biochem. Biophys. Res. Commun., 2000, 268(3), 750-756.
[http://dx.doi.org/10.1006/bbrc.2000.2222] [PMID: 10679277]
[6]
Stevens, R.W.; Elmendorf, D.; Gourlay, M.; Stroebel, E.; Gaafar, H.A. Application of fluoroimmunoassay to cerebrospinal fluid immunoglobulin G and albumin. J. Clin. Microbiol., 1979, 10(3), 346-350.
[http://dx.doi.org/10.1128/jcm.10.3.346-350.1979] [PMID: 114535]
[7]
Rózga, M. Kłoniecki, M.; Jabłonowska, A.; Dadlez, M.; Bal, W. The binding constant for amyloid Aβ40 peptide interaction with human serum albumin. Biochem. Biophys. Res. Commun., 2007, 364(3), 714-718.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.080] [PMID: 18028874]
[8]
Bohrmann, B.; Tjernberg, L.; Kuner, P.; Poli, S.; Levet-Trafit, B.; Näslund, J.; Richards, G.; Huber, W.; Döbeli, H.; Nordstedt, C. Endogenous proteins controlling amyloid β-peptide polymerization. Possible implications for β-amyloid formation in the central nervous system and in peripheral tissues. J. Biol. Chem., 1999, 274(23), 15990-15995.
[http://dx.doi.org/10.1074/jbc.274.23.15990] [PMID: 10347147]
[9]
Stanyon, H.F.; Viles, J.H. Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: implications for Alzheimer disease. J. Biol. Chem., 2012, 287(33), 28163-28168.
[http://dx.doi.org/10.1074/jbc.C112.360800] [PMID: 22718756]
[10]
Martinez Pomier, K.; Ahmed, R.; Melacini, G. Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities. Biophys. Chem., 2022, 282, 106743.
[http://dx.doi.org/10.1016/j.bpc.2021.106743] [PMID: 35093643]
[11]
Kakinen, A.; Javed, I.; Faridi, A.; Davis, T.P.; Ke, P.C. Serum albumin impedes the amyloid aggregation and hemolysis of human islet amyloid polypeptide and alpha synuclein. Biochim. Biophys. Acta Biomembr., 2018, 1860(9), 1803-1809.
[http://dx.doi.org/10.1016/j.bbamem.2018.01.015] [PMID: 29366673]
[12]
Litus, E.A.; Kazakov, A.S.; Sokolov, A.S.; Nemashkalova, E.L.; Galushko, E.I.; Dzhus, U.F.; Marchenkov, V.V.; Galzitskaya, O.V.; Permyakov, E.A.; Permyakov, S.E. The binding of monomeric amyloid β peptide to serum albumin is affected by major plasma unsaturated fatty acids. Biochem. Biophys. Res. Commun., 2019, 510(2), 248-253.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.081] [PMID: 30685090]
[13]
Zare, M.S.; Bozorgmehr, M.R.; Mohseni, S.; Beyramabadi, S.A. N-terminal truncation of peptide effects on human serum albumin and beta amyloid peptide interaction. J. Indian Chem. Soc., 2023, 100(6), 101004.
[14]
Zhao, M.; Guo, C. Multipronged regulatory functions of serum albumin in early stages of amyloid-β aggregation. ACS Chem. Neurosci., 2021, 12(13), 2409-2420.
[http://dx.doi.org/10.1021/acschemneuro.1c00150] [PMID: 34160192]
[15]
Schmidt, M.; Sachse, C.; Richter, W.; Xu, C.; Fändrich, M.; Grigorieff, N. Comparison of Alzheimer Aβ(1–40) and Aβ(1–42) amyloid fibrils reveals similar protofilament structures. Proc. Natl. Acad. Sci., 2009, 106(47), 19813-19818.
[http://dx.doi.org/10.1073/pnas.0905007106] [PMID: 19843697]
[16]
Um, J.W.; Kaufman, A.C.; Kostylev, M.; Heiss, J.K.; Stagi, M.; Takahashi, H.; Kerrisk, M.E.; Vortmeyer, A.; Wisniewski, T.; Koleske, A.J.; Gunther, E.C.; Nygaard, H.B.; Strittmatter, S.M. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron, 2013, 79(5), 887-902.
[http://dx.doi.org/10.1016/j.neuron.2013.06.036] [PMID: 24012003]
[17]
Moore, B.D.; Chakrabarty, P.; Levites, Y.; Kukar, T.L.; Baine, A.M.; Moroni, T.; Ladd, T.B.; Das, P.; Dickson, D.W.; Golde, T.E. Overlapping profiles of Abeta peptides in the Alzheimer’s disease and pathological aging brains. Alzheimers Res. Ther., 2012, 4(3), 18.
[http://dx.doi.org/10.1186/alzrt121] [PMID: 22621179]
[18]
Milojevic, J.; Melacini, G. Stoichiometry and affinity of the human serum albumin-Alzheimer’s Aβ peptide interactions. Biophys. J., 2011, 100(1), 183-192.
[http://dx.doi.org/10.1016/j.bpj.2010.11.037] [PMID: 21190670]
[19]
Algamal, M.; Milojevic, J.; Jafari, N.; Zhang, W.; Melacini, G. Mapping the interactions between the Alzheimer’s Aβ-peptide and human serum albumin beyond domain resolution. Biophys. J., 2013, 105(7), 1700-1709.
[http://dx.doi.org/10.1016/j.bpj.2013.08.025] [PMID: 24094411]
[20]
Mao, H.; Gunasekera, A.H.; Fesik, S.W. Expression, refolding, and isotopic labeling of human serum albumin domains for NMR spectroscopy. Protein Expr. Purif., 2000, 20(3), 492-499.
[http://dx.doi.org/10.1006/prep.2000.1330] [PMID: 11087689]
[21]
Dockal, M.; Carter, D.C.; Rüker, F. The three recombinant domains of human serum albumin. Structural characterization and ligand binding properties. J. Biol. Chem., 1999, 274(41), 29303-29310.
[http://dx.doi.org/10.1074/jbc.274.41.29303] [PMID: 10506189]
[22]
Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. Des. Sel., 1999, 12(6), 439-446.
[http://dx.doi.org/10.1093/protein/12.6.439] [PMID: 10388840]
[23]
Tomaselli, S.; Esposito, V.; Vangone, P.; van Nuland, N.A.J.; Bonvin, A.M.J.J.; Guerrini, R.; Tancredi, T.; Temussi, P.A.; Picone, D. The α-to-β conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: A step by step conformational analysis suggests the location of β conformation seeding. ChemBioChem, 2006, 7(2), 257-267.
[http://dx.doi.org/10.1002/cbic.200500223] [PMID: 16444756]
[24]
Desta, I.T. Performance and its limits in rigid body protein-protein docking. Structure, 2020, 28(9), 1071-1081.e3.
[25]
Vajda, S.; Yueh, C.; Beglov, D.; Bohnuud, T.; Mottarella, S.E.; Xia, B.; Hall, D.R.; Kozakov, D. New additions to the C lus P ro server motivated by CAPRI. Proteins, 2017, 85(3), 435-444.
[http://dx.doi.org/10.1002/prot.25219] [PMID: 27936493]
[26]
Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc., 2017, 12(2), 255-278.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[27]
Kozakov, D.; Beglov, D.; Bohnuud, T.; Mottarella, S.E.; Xia, B.; Hall, D.R.; Vajda, S. How good is automated protein docking? Proteins, 2013, 81(12), 2159-2166.
[http://dx.doi.org/10.1002/prot.24403] [PMID: 23996272]
[28]
Chuang, G.Y.; Kozakov, D.; Brenke, R.; Comeau, S.R.; Vajda, S. DARS (Decoys As the Reference State) potentials for protein-protein docking. Biophys. J., 2008, 95(9), 4217-4227.
[http://dx.doi.org/10.1529/biophysj.108.135814] [PMID: 18676649]
[29]
Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science, 1983, 221(4612), 709-713.
[http://dx.doi.org/10.1126/science.6879170] [PMID: 6879170]
[30]
Abraham, M. The GROMACS development team, GROMACS User Manual version 5.1. 2, 2016. , 2016.
[31]
Kaminski, G.A.; Friesner, R.A.; Tirado-Rives, J.; Jorgensen, W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B, 2001, 105(28), 6474-6487.
[http://dx.doi.org/10.1021/jp003919d]
[32]
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1), 014101.
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[33]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190.
[http://dx.doi.org/10.1063/1.328693]
[34]
Nosé, S.; Klein, M.L. Constant pressure molecular dynamics for molecular systems. Mol. Phys., 1983, 50(5), 1055-1076.
[http://dx.doi.org/10.1080/00268978300102851]
[35]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H]
[36]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[37]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery; ACS Publications, 2011.
[38]
Peng, Y. Predicting protein–DNA binding free energy change upon missense mutations using modified MM/PBSA approach: SAMPDI webserver. Bioinformatics, 2017, 34(5), 779-786.
[PMID: 29091991]
[39]
Furini, S.; Barbini, P.; Domene, C. DNA-recognition process described by MD simulations of the lactose repressor protein on a specific and a non-specific DNA sequence. Nucleic Acids Res., 2013, 41(7), 3963-3972.
[http://dx.doi.org/10.1093/nar/gkt099] [PMID: 23430151]
[40]
Dong, C.; Yan, P.; Wang, J.; Mu, H.; Wang, S.; Guo, F. Rational identification of natural organic compounds to target the intermolecular interaction between Foxm and DNA in colorectal cancer. Bioorg. Chem., 2017, 70, 12-16.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.003] [PMID: 27881238]
[41]
Nguyen, P.; Derreumaux, P. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Acc. Chem. Res., 2014, 47(2), 603-611.
[http://dx.doi.org/10.1021/ar4002075] [PMID: 24368046]
[42]
Aisen, P.S.; Vellas, B.; Hampel, H. Moving towards early clinical trials for amyloid-targeted therapy in Alzheimer’s disease. Nat. Rev. Drug Discov., 2013, 12(4), 324-324.
[http://dx.doi.org/10.1038/nrd3842-c1] [PMID: 23493086]
[43]
Kirkitadze, M.D.; Condron, M.M.; Teplow, D.B. Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis11Edited by F. Cohen. J. Mol. Biol., 2001, 312(5), 1103-1119.
[http://dx.doi.org/10.1006/jmbi.2001.4970] [PMID: 11580253]
[44]
Ono, K.; Condron, M.M.; Teplow, D.B. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci., 2009, 106(35), 14745-14750.
[http://dx.doi.org/10.1073/pnas.0905127106] [PMID: 19706468]
[45]
Ono, K.; Condron, M.M.; Teplow, D.B. Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid β-protein assembly and toxicity. J. Biol. Chem., 2010, 285(30), 23186-23197.
[http://dx.doi.org/10.1074/jbc.M109.086496] [PMID: 20452980]
[46]
Coles, M.; Bicknell, W.; Watson, A.A.; Fairlie, D.P.; Craik, D.J. Solution structure of amyloid β-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry, 1998, 37(31), 11064-11077.
[http://dx.doi.org/10.1021/bi972979f] [PMID: 9693002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy