Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Anti-angiogenic Potential of Trans-chalcone in an In Vivo Chick Chorioallantoic Membrane Model: An ATP Antagonist to VEGFR with Predicted Blood-brain Barrier Permeability

Author(s): Anna Senrung, Tanya Tripathi, Nikita Aggarwal, Divya Janjua, Arun Chhokar, Joni Yadav, Apoorva Chaudhary, Kulbhushan Thakur, Tejveer Singh and Alok Chandra Bharti*

Volume 22, Issue 2, 2024

Published on: 03 November, 2023

Page: [187 - 211] Pages: 25

DOI: 10.2174/0118715257250417231019102501

Price: $65

Abstract

Background: Glioblastoma multiforme (GBM) is characterized by massive tumorinduced angiogenesis aiding tumorigenesis. Vascular endothelial growth factor A (VEGF-A) via VEGF receptor 2 (VEGFR-2) constitutes majorly to drive this process. Putting a halt to tumordriven angiogenesis is a major clinical challenge, and the blood-brain barrier (BBB) is the prime bottleneck in GBM treatment. Several phytochemicals show promising antiangiogenic activity across different models, but their ability to cross BBB remains unexplored.

Methods: We screened over 99 phytochemicals having anti-angiogenic properties reported in the literature and evaluated them for their BBB permeability, molecular interaction with VEGFR-2 domains, ECD2-3 (extracellular domains 2-3) and TKD (tyrosine kinase domain) at VEGF-A and ATP binding site, cell membrane permeability, and hepatotoxicity using in silico tools. Furthermore, the anti-angiogenic activity of predicted lead Trans-Chalcone (TC) was evaluated in the chick chorioallantoic membrane.

Results: Out of 99 phytochemicals, 35 showed an efficient ability to cross BBB with a probability score of > 0.8. Docking studies revealed 30 phytochemicals crossing benchmark binding affinity < -6.4 kcal/mol of TKD with the native ligand ATP alone. Out of 30 phytochemicals, 12 showed moderate to low hepatotoxicity, and 5 showed a violation of Lipinski’s rule of five. Our in silico analysis predicted TC as a BBB permeable anti-angiogenic compound for use in GBM therapy. TC reduced vascularization in the CAM model, which was associated with the downregulation of VEGFR-2 transcript expression.

Conclusion: The present study showed TC to possess anti-angiogenic potential via the inhibition of VEGFR-2. In addition, the study predicted TC to cross BBB as well as a safe alternative for GBM therapy, which needs further investigation.

Keywords: Glioblastoma multiforme, tumor-induced-angiogenesis, VEGF, blood-brain barrier, anti-angiogenesis, brain parenchyma.

Graphical Abstract
[1]
Tamimi, A.F.; Juweid, M. Epidemiology and outcome of glioblastoma. In: Glioblastoma; Codon Publications: Brisbane (AU), 2017.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch8]
[2]
Nørøxe, D.S.; Poulsen, H.S.; Lassen, U. Hallmarks of glioblastoma: A systematic review. ESMO Open, 2016, 1(6), e000144.
[http://dx.doi.org/10.1136/esmoopen-2016-000144] [PMID: 28912963]
[3]
Ahir, B.K.; Engelhard, H.H.; Lakka, S.S. Tumor development and angiogenesis in adult brain tumor. Glioblastoma. Mol. Neurobiol., 2020, 57(5), 2461-2478.
[http://dx.doi.org/10.1007/s12035-020-01892-8] [PMID: 32152825]
[4]
Xu, C.; Wu, X.; Zhu, J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. ScientificWorldJournal, 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/417413] [PMID: 23533349]
[5]
Kim, Y.H.; Lee, W.W.; Park, C.G. implications of calcineurin/nfat inhibitors’ regulation of dendritic cells and innate immune cells in islet xenotransplantation. J. Bacteriol. Virol., 2016, 46(1), 1.
[http://dx.doi.org/10.4167/jbv.2016.46.1.1]
[6]
Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol., 2020, 8, 599281.
[http://dx.doi.org/10.3389/fcell.2020.599281] [PMID: 33304904]
[7]
Evans, I.M.; Britton, G.; Zachary, I.C. Vascular endothelial growth factor induces heat shock protein (HSP) 27 serine 82 phosphorylation and endothelial tubulogenesis via protein kinase D and independent of p38 kinase. Cell. Signal., 2008, 20(7), 1375-1384.
[http://dx.doi.org/10.1016/j.cellsig.2008.03.002] [PMID: 18440775]
[8]
Holmqvist, K.; Cross, M.J.; Rolny, C.; Hägerkvist, R.; Rahimi, N.; Matsumoto, T.; Claesson-Welsh, L.; Welsh, M. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J. Biol. Chem., 2004, 279(21), 22267-22275.
[http://dx.doi.org/10.1074/jbc.M312729200] [PMID: 15026417]
[9]
Lamalice, L.; Houle, F.; Jourdan, G.; Huot, J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene, 2004, 23(2), 434-445.
[http://dx.doi.org/10.1038/sj.onc.1207034] [PMID: 14724572]
[10]
Abu-Ghazaleh, R.; Kabir, J.; Jia, H.; Lobo, M.; Zachary, I. Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem. J., 2001, 360(1), 255-264.
[http://dx.doi.org/10.1042/bj3600255] [PMID: 11696015]
[11]
Napione, L.; Alvaro, M.; Bussolino, F. VEGF-mediated signal transduction in tumor angiogenesis. In: Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy; InTech, 2017.
[http://dx.doi.org/10.5772/66764]
[12]
Navis, A.C.; Bourgonje, A.; Wesseling, P.; Wright, A.; Hendriks, W.; Verrijp, K.; van der Laak, J.A.W.M.; Heerschap, A.; Leenders, W.P.J. Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2. PLoS One, 2013, 8(3), e58262.
[http://dx.doi.org/10.1371/journal.pone.0058262] [PMID: 23484006]
[13]
Li, Y.; Ali, S.; Clarke, J.; Cha, S. Bevacizumab in recurrent glioma: Patterns of treatment failure and implications. Brain Tumor Res. Treat., 2017, 5(1), 1-9.
[http://dx.doi.org/10.14791/btrt.2017.5.1.1] [PMID: 28516072]
[14]
Michaelsen, S.R.; Staberg, M.; Pedersen, H.; Jensen, K.E.; Majewski, W.; Broholm, H.; Nedergaard, M.K.; Meulengracht, C.; Urup, T.; Villingshøj, M.; Lukacova, S.; Skjøth-Rasmussen, J.; Brennum, J.; Kjær, A.; Lassen, U.; Stockhausen, M.T.; Poulsen, H.S.; Hamerlik, P. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance. Neuro Oncol., 2018, 20(11), 1462-1474.
[http://dx.doi.org/10.1093/neuonc/noy103] [PMID: 29939339]
[15]
Thomson, R.J.; Moshirfar, M.; Ronquillo, Y. Tyrosine Kinase Inhibitors; StatPearls: Treasure Island, FL, 2021.
[16]
Fatima, N.; Baqri, S.S.R.; Alsulimani, A.; Fagoonee, S.; Slama, P.; Kesari, K.K.; Roychoudhury, S.; Haque, S. Phytochemicals from indian ethnomedicines: Promising prospects for the management of oxidative stress and cancer. Antioxidants, 2021, 10(10), 1606.
[http://dx.doi.org/10.3390/antiox10101606] [PMID: 34679741]
[17]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[18]
Van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat., 2015, 19, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[19]
Bellettato, C.M.; Scarpa, M. Possible strategies to cross the blood-brain barrier. Ital. J. Pediatr., 2018, 44(S2), 131.
[http://dx.doi.org/10.1186/s13052-018-0563-0] [PMID: 30442184]
[20]
Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med., 2021, 137, 104851.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104851] [PMID: 34520990]
[21]
PubMed. Available from: https://pubmed.ncbi.nlm.nih.gov/
[22]
Google. Available from: https://www.google.com/
[23]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[24]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[25]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[26]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[28]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[29]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[30]
Protein. Available from: https://www.ncbi.nlm.nih.gov/protein/
[31]
Ko, J. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res., 2012, 40((Web Server issue)), W294-7.
[http://dx.doi.org/10.1093/nar/gks493]
[32]
Brozzo, M.S.; Bjelić, S.; Kisko, K.; Schleier, T.; Leppänen, V.M.; Alitalo, K.; Winkler, F.K.; Ballmer-Hofer, K. Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood, 2012, 119(7), 1781-1788.
[http://dx.doi.org/10.1182/blood-2011-11-390922] [PMID: 22207738]
[33]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[34]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[35]
Ribatti, D.; Nico, B.; Vacca, A.; Presta, M. The gelatin sponge-chorioallantoic membrane assay. Nat. Protoc., 2006, 1(1), 85-91.
[http://dx.doi.org/10.1038/nprot.2006.13] [PMID: 17406216]
[36]
Cloney, K.; Franz-Odendaal, T.A. Optimized ex-ovo culturing of chick embryos to advanced stages of development. J. Vis. Exp., 2015, (95), 52129.
[PMID: 25650550]
[37]
Kue, C.S.; Tan, K.Y.; Lam, M.L.; Lee, H.B. Chick embryo chorioallantoic membrane (CAM): An alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp. Anim., 2015, 64(2), 129-138.
[http://dx.doi.org/10.1538/expanim.14-0059] [PMID: 25736707]
[38]
Hubrecht, R.C.; Carter, E. The 3Rs and humane experimental technique: Implementing change. Animals, 2019, 9(10), 754.
[http://dx.doi.org/10.3390/ani9100754] [PMID: 31575048]
[39]
Bhat, A.; Sharma, A.; Bharti, A.C. Upstream hedgehog signaling components are exported in exosomes of cervical cancer cell lines. Nanomedicine, 2018, 13(17), 2127-2138.
[http://dx.doi.org/10.2217/nnm-2018-0143] [PMID: 30265222]
[40]
Vishnoi, K.; Mahata, S.; Tyagi, A.; Pandey, A.; Verma, G.; Jadli, M.; Singh, T.; Singh, S.M.; Bharti, A.C. Cross-talk between human papillomavirus oncoproteins and hedgehog signaling synergistically promotes stemness in cervical cancer cells. Sci. Rep., 2016, 6(1), 34377.
[http://dx.doi.org/10.1038/srep34377] [PMID: 27678330]
[41]
Jaka, O.; Iturria, I.; van der Toorn, M.; Hurtado de Mendoza, J.; Latino, D.A.R.S.; Alzualde, A.; Peitsch, M.C.; Hoeng, J.; Koshibu, K. Effects of natural monoamine oxidase inhibitors on anxiety-like behavior in zebrafish. Front. Pharmacol., 2021, 12, 669370.
[http://dx.doi.org/10.3389/fphar.2021.669370] [PMID: 34079463]
[42]
Djinovic-Carugo, K.; Carugo, O. Missing strings of residues in protein crystal structures. Intrinsically Disord. Proteins, 2015, 3(1), e1095697.
[http://dx.doi.org/10.1080/21690707.2015.1095697] [PMID: 28232893]
[43]
Fong, G.H.; Rossant, J.; Gertsenstein, M.; Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 1995, 376(6535), 66-70.
[http://dx.doi.org/10.1038/376066a0] [PMID: 7596436]
[44]
Hiratsuka, S.; Minowa, O.; Kuno, J.; Noda, T.; Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci., 1998, 95(16), 9349-9354.
[http://dx.doi.org/10.1073/pnas.95.16.9349] [PMID: 9689083]
[45]
Muller, Y.A.; Li, B.; Christinger, H.W.; Wells, J.A.; Cunningham, B.C.; de Vos, A.M. Vascular endothelial growth factor: Crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci., 1997, 94(14), 7192-7197.
[http://dx.doi.org/10.1073/pnas.94.14.7192] [PMID: 9207067]
[46]
Roskoski, R. Jr Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol. Res., 2017, 120, 116-132.
[http://dx.doi.org/10.1016/j.phrs.2017.03.010] [PMID: 28330784]
[47]
Leppänen, V.M.; Prota, A.E.; Jeltsch, M.; Anisimov, A.; Kalkkinen, N.; Strandin, T.; Lankinen, H.; Goldman, A.; Ballmer-Hofer, K.; Alitalo, K. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc. Natl. Acad. Sci., 2010, 107(6), 2425-2430.
[http://dx.doi.org/10.1073/pnas.0914318107] [PMID: 20145116]
[48]
Shaik, F.; Cuthbert, G.; Homer-Vanniasinkam, S.; Muench, S.; Ponnambalam, S.; Harrison, M. Structural basis for vascular endothelial growth factor receptor activation and implications for disease therapy. Biomolecules, 2020, 10(12), 1673.
[http://dx.doi.org/10.3390/biom10121673] [PMID: 33333800]
[49]
Wang, L.; Chen, N.; Cheng, H. Fisetin inhibits vascular endothelial growth factor-induced angiogenesis in retinoblastoma cells. Oncol. Lett., 2020, 20(2), 1239-1244.
[http://dx.doi.org/10.3892/ol.2020.11679] [PMID: 32724364]
[50]
Modi, S.J.; Kulkarni, V.M. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Med. Drug Discov., 2019, 2, 100009.
[51]
González, I.; Chatterjee, D. Histopathological features of drug-induced liver injury secondary to osimertinib. ACG Case Rep. J., 2019, 6(2), e00011.
[http://dx.doi.org/10.14309/crj.0000000000000011] [PMID: 31616716]
[52]
Guan, L.P.; Nan, J.X.; Jin, X.J.; Jin, Q.H.; Kwak, K.C.; Chai, K.; Quan, Z.S. Protective effects of chalcone derivatives for acute liver injury in mice. Arch. Pharm. Res., 2005, 28(1), 81-86.
[http://dx.doi.org/10.1007/BF02975140] [PMID: 15742813]
[53]
Shen, J.; Cheng, F.; Xu, Y.; Li, W.; Tang, Y. Estimation of ADME properties with substructure pattern recognition. J. Chem. Inf. Model., 2010, 50(6), 1034-1041.
[http://dx.doi.org/10.1021/ci100104j] [PMID: 20578727]
[54]
Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model., 2018, 81, 211-228.
[http://dx.doi.org/10.1016/j.jmgm.2018.02.013] [PMID: 29609141]
[55]
Oyedara, O.O.; Agbedahunsi, J.M.; Adeyemi, F.M.; Juárez-Saldivar, A.; Fadare, O.A.; Adetunji, C.O.; Rivera, G. Computational screening of phytochemicals from three medicinal plants as inhibitors of transmembrane protease serine 2 implicated in SARS-CoV-2 infection. Phytomed. Plus, 2021, 1(4), 100135.
[http://dx.doi.org/10.1016/j.phyplu.2021.100135] [PMID: 35403085]
[56]
Zhang, L.; Wu, Y.; Yang, G.; Gan, H.; Sang, D.; Zhou, J.; Su, L.; Wang, R.; Ma, L. Design, synthesis and biological evaluation of novel osthole-based derivatives as potential neuroprotective agents. Bioorg. Med. Chem. Lett., 2020, 30(24), 127633.
[http://dx.doi.org/10.1016/j.bmcl.2020.127633] [PMID: 33132198]
[57]
Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res., 2003, 31(13), 3381-3385.
[http://dx.doi.org/10.1093/nar/gkg520] [PMID: 12824332]
[58]
Laskowski, R.A. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystall., 1993, 26(2), 283-291.
[59]
Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol., 1997, 277, 396-404.
[http://dx.doi.org/10.1016/S0076-6879(97)77022-8] [PMID: 9379925]
[60]
Dhanavade, M.J.; Jalkute, C.B.; Barage, S.H.; Sonawane, K.D. Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Aβ peptide. Comput. Biol. Med., 2013, 43(12), 2063-2070.
[http://dx.doi.org/10.1016/j.compbiomed.2013.09.021] [PMID: 24290922]
[61]
Kootery, K.P.; Sarojini, S. Structural and functional characterization of a hypothetical protein in the RD7 region in clinical isolates of Mycobacterium tuberculosis - an in silico approach to candidate vaccines. J. Genet. Eng. Biotechnol., 2022, 20(1), 55.
[http://dx.doi.org/10.1186/s43141-022-00340-5] [PMID: 35394551]
[62]
Lakhlili, W.; Chevé, G.; Yasri, A.; Ibrahimi, A. Determination and validation of mTOR kinase-domain 3D structure by homology modeling. OncoTargets Ther., 2015, 8, 1923-1930.
[http://dx.doi.org/10.2147/OTT.S84200] [PMID: 26257525]
[63]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[64]
Chen, Z.; Lin, T.; Liao, X.; Li, Z.; Lin, R.; Qi, X.; Chen, G.; Sun, L.; Lin, L. Network pharmacology based research into the effect and mechanism of yinchenhao decoction against cholangiocarcinoma. Chin. Med., 2021, 16(1), 13.
[http://dx.doi.org/10.1186/s13020-021-00423-4] [PMID: 33478536]
[65]
Qawoogha, S.S.; Shahiwala, A. Identification of potential anticancer phytochemicals against colorectal cancer by structure-based docking studies. J. Recept. Signal Transduct. Res., 2020, 40(1), 67-76.
[http://dx.doi.org/10.1080/10799893.2020.1715431] [PMID: 31971455]
[66]
Jin, F.; Xie, T.; Huang, X.; Zhao, X. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm. Biol., 2018, 56(1), 665-671.
[http://dx.doi.org/10.1080/13880209.2018.1548627] [PMID: 31070539]
[67]
Ma, W.; Zhu, M.; Zhang, D.; Yang, L.; Yang, T.; Li, X.; Zhang, Y. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine, 2017, 25, 45-51.
[http://dx.doi.org/10.1016/j.phymed.2016.12.013] [PMID: 28190470]
[68]
Kangsamaksin, T.; Chaithongyot, S.; Wootthichairangsan, C.; Hanchaina, R.; Tangshewinsirikul, C.; Svasti, J. Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PLoS One, 2017, 12(12), e0189628.
[http://dx.doi.org/10.1371/journal.pone.0189628] [PMID: 29232409]
[69]
Xu, X.; Wu, L.; Zhou, X.; Zhou, N.; Zhuang, Q.; Yang, J.; Dai, J.; Wang, H.; Chen, S.; Mao, W. Cryptotanshinone inhibits VEGF-induced angiogenesis by targeting the VEGFR2 signaling pathway. Microvasc. Res., 2017, 111, 25-31.
[http://dx.doi.org/10.1016/j.mvr.2016.12.011] [PMID: 28040437]
[70]
Nofianti, K.A.; Ekowati, J. o -Hydroxycinnamic derivatives as prospective anti-platelet candidates: In silico pharmacokinetic screening and evaluation of their binding sites on COX-1 and P2Y 12 receptors. J. Basic Clin. Physiol. Pharmacol., 2019, 30(6), 20190327.
[http://dx.doi.org/10.1515/jbcpp-2019-0327] [PMID: 31855569]
[71]
Muhammad, A.; Katsayal, B.S.; Forcados, G.E.; Malami, I.; Abubakar, I.B.; kandi, A.I.; Idris, A.M.; Yusuf, S.; Musa, S.M.; Monday, N.; Umar, Z.S. In silico predictions on the possible mechanism of action of selected bioactive compounds against breast cancer. in silico Pharmacol., 2020, 8(1), 4.
[http://dx.doi.org/10.1007/s40203-020-00057-8] [PMID: 33194532]
[72]
Ibrahim, Z.Y.; Uzairu, A.; Shallangwa, G.A.; Abechi, S.E. Application of QSAR method in the design of enhanced antimalarial derivatives of azetidine-2-carbonitriles, their molecular docking, drug-likeness, and swissadme properties. Iran. J. Pharm. Res., 2021, 20(3), 254-270.
[PMID: 34903987]
[73]
Oh, K.K.; Adnan, M.; Cho, D.H. Network pharmacology-based study to uncover potential pharmacological mechanisms of korean thistle (cirsium japonicum var. maackii (maxim.) matsum.) flower against cancer. Molecules, 2021, 26(19), 5904.
[http://dx.doi.org/10.3390/molecules26195904] [PMID: 34641448]
[74]
Li, M. The in ovo chick Chorioallantoic Membrane (CAM) assay as an efficient xenograft model of hepatocellular carcinoma. J. Vis. Exp., 2015, 104, 52411.
[75]
Kennedy, D.C.; Coen, B.; Wheatley, A.M.; McCullagh, K.J.A. Microvascular experimentation in the chick chorioallantoic membrane as a model for screening angiogenic agents including from gene-modified cells. Int. J. Mol. Sci., 2021, 23(1), 452.
[http://dx.doi.org/10.3390/ijms23010452] [PMID: 35008876]
[76]
Meehan, G.R.; Scales, H.E.; Osii, R.; De Niz, M.; Lawton, J.C.; Marti, M.; Garside, P.; Craig, A.; Brewer, J.M. Developing a xenograft model of human vasculature in the mouse ear pinna. Sci. Rep., 2020, 10(1), 2058.
[http://dx.doi.org/10.1038/s41598-020-58650-y] [PMID: 32029768]
[77]
Schmidt, K.M.; Geissler, E.K.; Lang, S.A. Subcutaneous murine xenograft models: A critical tool for studying human tumor growth and angiogenesis in vivo. Methods Mol. Biol., 2016, 1464, 129-137.
[http://dx.doi.org/10.1007/978-1-4939-3999-2_12] [PMID: 27858362]
[78]
Lamoke, F.; Labazi, M.; Montemari, A.; Parisi, G.; Varano, M.; Bartoli, M. Trans-Chalcone prevents VEGF expression and retinal neovascularization in the ischemic retina. Exp. Eye Res., 2011, 93(4), 350-354.
[http://dx.doi.org/10.1016/j.exer.2011.02.007] [PMID: 21354136]
[79]
Ribatti, D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech. Dev., 2016, 141, 70-77.
[http://dx.doi.org/10.1016/j.mod.2016.05.003] [PMID: 27178379]
[80]
Ma, Q.; Chen, W.; Chen, W. Anti-tumor angiogenesis effect of a new compound: B-9-3 through interference with VEGFR2 signaling. Tumour Biol., 2016, 37(5), 6107-6116.
[http://dx.doi.org/10.1007/s13277-015-4473-0] [PMID: 26611645]
[81]
Shanmuganathan, S.; Angayarkanni, N. Chebulagic acid chebulinic acid and gallic acid, the active principles of triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascul. Pharmacol., 2018, 108, 23-35.
[http://dx.doi.org/10.1016/j.vph.2018.04.005] [PMID: 29678603]
[82]
Tufan, A.; Satiroglu-Tufan, N. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr. Cancer Drug Targets, 2005, 5(4), 249-266.
[http://dx.doi.org/10.2174/1568009054064624] [PMID: 15975046]
[83]
Petrová, K.; Bačkorová, M.; Demčišáková, Z.; Petrovová, E.; Goga, M.; Vilková, M.; Frenák, R.; Bačkor, M.; Mojžiš, J.; Kello, M. Usnic acid isolated from Usnea antarctica (Du Rietz) reduced in vitro angiogenesis in VEGF- and bFGF-stimulated HUVECs and Ex Ovo in Quail Chorioallantoic Membrane (CAM) assay. Life, 2022, 12(9), 1444.
[http://dx.doi.org/10.3390/life12091444] [PMID: 36143480]
[84]
Jung, M.H.; Lee, S.H.; Ahn, E.M.; Lee, Y.M. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway. Carcinogenesis, 2009, 30(4), 655-661.
[http://dx.doi.org/10.1093/carcin/bgp039] [PMID: 19228635]
[85]
Yuan, X.; Yang, Q.; Liu, T.; Li, K.; Liu, Y.; Zhu, C.; Zhang, Z.; Li, L.; Zhang, C.; Xie, M.; Lin, J.; Zhang, J.; Jin, Y. Design, synthesis and in vitro evaluation of 6-amide-2-aryl benzoxazole/benzimidazole derivatives against tumor cells by inhibiting VEGFR-2 kinase. Eur. J. Med. Chem., 2019, 179, 147-165.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.054] [PMID: 31252306]
[86]
Alipour, M.R.; Jeddi, S.; Karimi-Sales, E. Trans ‐Chalcone inhibits high‐fat diet‐induced disturbances in FXR/SREBP‐1c/FAS and FXR/Smad‐3 pathways in the kidney of rats. J. Food Biochem., 2020, 44(11), e13476.
[http://dx.doi.org/10.1111/jfbc.13476] [PMID: 32944984]
[87]
Bortolotto, L.F.B.; Barbosa, F.R.; Silva, G.; Bitencourt, T.A.; Beleboni, R.O.; Baek, S.J.; Marins, M.; Fachin, A.L. Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother., 2017, 85, 425-433.
[http://dx.doi.org/10.1016/j.biopha.2016.11.047] [PMID: 27903423]
[88]
Komoto, T.T.; Lee, J.; Lertpatipanpong, P.; Ryu, J.; Marins, M.; Fachin, A.L.; Baek, S.J. Trans-chalcone suppresses tumor growth mediated at least in part by the induction of heme oxygenase-1 in breast cancer. Toxicol. Res., 2021, 37(4), 485-493.
[http://dx.doi.org/10.1007/s43188-021-00089-y] [PMID: 34631505]
[89]
Staurengo-Ferrari, L.; Ruiz-Miyazawa, K.W.; Pinho-Ribeiro, F.A.; Fattori, V.; Zaninelli, T.H.; Badaro-Garcia, S.; Borghi, S.M.; Carvalho, T.T.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q.; Casagrande, R.; Verri, W.A., Jr Trans-chalcone attenuates pain and inflammation in experimental acute gout arthritis in mice. Front. Pharmacol., 2018, 9, 1123.
[http://dx.doi.org/10.3389/fphar.2018.01123] [PMID: 30333752]
[90]
Singh, H.; Sidhu, S.; Chopra, K.; Khan, M.U. Hepatoprotective effect of trans -Chalcone on experimentally induced hepatic injury in rats: Inhibition of hepatic inflammation and fibrosis. Can. J. Physiol. Pharmacol., 2016, 94(8), 879-887.
[http://dx.doi.org/10.1139/cjpp-2016-0071] [PMID: 27191034]
[91]
Karimi-Sales, E.; Jeddi, S.; Ebrahimi-Kalan, A.; Alipour, M.R. Trans-chalcone enhances insulin sensitivity through the miR-34a/SIRT1 pathway. Iran. J. Basic Med. Sci., 2018, 21(4), 359-363.
[PMID: 29796217]
[92]
Martinez, R.M.; Pinho-Ribeiro, F.A.; Steffen, V.S.; Caviglione, C.V.; Fattori, V.; Bussmann, A.J.C.; Bottura, C.; Fonseca, M.J.V.; Vignoli, J.A.; Baracat, M.M.; Georgetti, S.R.; Verri, W.A., Jr; Casagrande, R. trans-Chalcone, a flavonoid precursor, inhibits UV-induced skin inflammation and oxidative stress in mice by targeting NADPH oxidase and cytokine production. Photochem. Photobiol. Sci., 2017, 16(7), 1162-1173.
[http://dx.doi.org/10.1039/c6pp00442c] [PMID: 28594010]
[93]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[94]
Ziyad, S.; Iruela-Arispe, M.L. Molecular mechanisms of tumor angiogenesis. Genes Cancer, 2011, 2(12), 1085-1096.
[http://dx.doi.org/10.1177/1947601911432334] [PMID: 22866200]
[95]
Lee, Y.S.; Lim, S.S.; Shin, K.H.; Kim, Y.S.; Ohuchi, K.; Jung, S.H. Anti-angiogenic and anti-tumor activities of 2′-hydroxy-4′-methoxychalcone. Biol. Pharm. Bull., 2006, 29(5), 1028-1031.
[http://dx.doi.org/10.1248/bpb.29.1028] [PMID: 16651739]
[96]
Sun, M.; Wang, Y.; Yuan, M.; Zhao, Q.; Zhang, Y.; Yao, Y.; Duan, Y. Angiogenesis, anti-tumor, and anti-metastatic activity of novel α-substituted hetero-aromatic chalcone hybrids as inhibitors of microtubule polymerization. Front Chem., 2021, 9, 766201.
[http://dx.doi.org/10.3389/fchem.2021.766201] [PMID: 34900935]
[97]
Yu, Y.; W. R., G.; Sato, J.D. (1998). Coding region for human VEGF receptor KDR (VEGFR-2).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy